[2]p()*1/2-" [1]p1-"~ TJ
3 10000pt

0.00.5em

0.0.00.5em
0.0.0.00.5em
0.0.0.0.00.5em

0.0.0.0.0.00.5em

Datavyu Documentation
Release 1.3

Databrary Project

Aug 30, 2022

Contents

i

Datavyu D 4 4 Thul:47PM

The Spreadsheet, |2i= - baan fore: N

InfantSpeech MomObject

00:00:09:075 00:00:11:855
(Thanks. What is this? [Russian])

00:00:10:710 00:00:21:450

(cup, .)

Cells hold data
in the form of codes.

00:00:13:299 00:00:14:490|
(Tchai)

00:00:14:322 00:00:15:840
(It's tea?)

00:00:16:929 00:00:20:058
(No... | want coffee. [Russian].

Bring me some caffee.)
Columns capture events F

The Controller keypad
maps directly to your own,
helping to record
observations. Contraller

in the form of cells.

Lock all Snap Region Clear Region
00:00:36:648 @ 0x
| DatavyuSampleVide.
w=i | | e,)
: . = « Jurmp Dk by @
Loneer | |_pay | |ofige | | osck | [o0-0005:000
LI -] ‘ I
shuttie) | stop) |shuttie) | _find _
CRIRTRINT = The Controller enables
e e e e | ‘ ‘ | ‘ ‘ ‘ | you to control playback,
> = Offsat

and to create cells.

= new
now cel ot | 1
st Tréuaer | [offSls | |_c&!

Datavyu is a complete software package for visualizing and coding behavioral observations from video
data sources. Designed by - and for - behavioral scientists, Datavyu facilitates data coding and sharing
through the ongoing Databrary data library project.

Note: Datavyu is an open source software package. You should familiarize yourself with previous version’s
release notes, to be aware of each version’s features and potential issues. If you encounter a bug, you can
report it and get help by posting to the support forum.

In addition to the powerful software package, Datavyu provides a Ruby-based API to help you automate
common tasks and ensure accuracy in your data. The API greatly enhances the Datavyu experience, and is
well worth the effort of learning some programming fundamentals.

When you are ready to start using Datavyu, the following chapters outline everything you need to know
to become an expert Datavyu user, from first principles to advanced strategies.

http://databrary.org/
http://datavyu.org/download/
http://datavyu.org/support

Chapter 1

Software Guide

Datavyu is a Java-based application that runs on Windows, Mac, and on Linux operating systems. Its
primary goal is to link behavioral researchers with their video and to provide a way for researchers to record
their observations, extract their data for analysis, and share their work. Using a spreadsheet template that
specifies which categories of events you're interested in coding, Datavyu enables researchers to record events
and build on prior analyses.

This guide provides all the information you need to start using Datavyu, with installation instructions, an
in-depth description of the software components, and a series of tutorials that target common operations. The
reference section lists terms and definitions, as well as detailing any file format requirements and limitations.

1.1 Installation

Datavyu is a Java-based application, which is easy to install on Mac OS X and Windows. The following
sections describe Datavyu’s system requirements and then the installation process itself.

1.1.1 Requirements
Hardware Requirements

The hardware requirements listed below are the minimum needed for Datavyu. More RAM or a faster
processor will improve Datavyu’s performance, especially when working with higher-resolution data sources.

e 1GB of RAM.
e 1.2 GHz processor.

You will also need enough disk space for your videos and a keypad, either as part of your keyboard, or
as an external device.

Software Requirements

Datavyu requires Java 1.6 or higher. Many operating systems include Java by default, but if you have not
installed Java, you will need to do so.

The newest Mac build now has a built in version of Java. It no longer matters what version of Java is
on your computer because Datavyu will use the one that it installs.

Datavyu supports video playback through Quicktime.

Note: If you are using Quicktime 7.7.5 or later, you will need to simply custom install Quicktime to include
Java libraries in your version. The screenshot shows just how easy it is! Older versions of Quicktime can be
typically installed. If you are on Windows 10, please download QuickTime version 7.7.6 here. Later versions
of QuickTime will not work on Windows 10.

https://support.apple.com/kb/DL1822?locale=en_US

i& QuickTime 7 Product Features Z”E'E'

QuickTime 7 Product Features

Select the desired features, then click Mext,

(=3 - | QuickTime Essentials
= ~ | QuickTime Player
= - | QuickTime \Web Plag-in
[=f- =0 = | Legacy QuickTime Features

¥ | QuickTime PictureWiewer
CuickTime For Java

Media services for Java-based applications, Unsupported,

This feature requires 2936KE on your hard drive,

< Back ” Mext =] [Cancel

1.1.2 Install Datavyu
Mac OS X

1. Before downloading Datavyu, please be sure that your security settings allow the installation of non-
Mac applications. To change this permanently or temporarily go to System Preferences > Security
& Privacy. On the General Tab click the little lock in the lower left corner to unlock the general
preference pane. Then select “Anywhere” to allow Datavyu’s installtion.

1. Download the latest Datavyu release for Mac OS X from the Datavyu website’s Downloads Page.

2. You can drag this to your Applications folder, or some other preferred location on your computer.

Windows

1. Download the latest Datavyu release for Windows from the Datavyu website’s Downloads Page. Unless
you’ve told Windows what to do with these types of files, a File Download window will pop up,
prompting you to either Open the Datavyu-Windows-latest.zip file, or Save it. Either option is fine
- you’ll merely need to navigate to the folder after downloading if you choose to Save rather than
choosing Open.

2. Unzip the program by opening the datavyu folder and double-clicking on datavyu. A “Compressed
(zipped) Folders Warning” will appear. Select Fztract all to decompress the files.

3. Windows will run the Extraction Wizard. Follow the prompts and extract the files. The Datavyu
program is now available, but you need to install a video plugin before you can start using video with
Datavyu.

http://datavyu.org/download/
http://datavyu.org/download/

datavyu-1.3 Applications

You have chosen to open

1, Datavyu-Windows-latest.zip
which is 2 Compressed (zipped) Folder
from: httpe//datavyu.org

What should Firefox do with this file?

©)|Open with | Windows Explorer (default)
() SaveFile

"] Do this automatically for files like this from now on.

mpressed Hrh'._lI]?

This application may depend on other compressed
files in this folder.

For the application to run propery, it is recommended
that you first extract all files.

Bdractal | |

Select o Deitingticn and Extract Files

Fies will By extractnd 1 this fokdor

4. Install a video plugin. At present, Datavyu for Windows does not include any video plugins. To use
Datavyu, you must download Quicktime for Windows. If you already use Apple’s iTunes, you likely
already have Quicktime for Windows. Otherwise, you may download Quicktime for Windows from
Apple’s website.

1.1.3 Keep Datavyu Up-to-Date

Every time you start Datavyu while connected to the Internet, it checks to see if your version is the latest
available. When a new version is released, Datavyu will prompt you to download the latest version.

You can also check if your Datavyu version is up to date by opening the Help menu from the menu
bar when the spreadsheet window is selected, and then selecting Check for updates. ... If a new version is
available, it will direct you to the download page where you can download the latest release. Remember to
replace your current application with the latest version of Datavyu that you have just downloaded!

Important: If you have found a workflow that works well for you, please do not update your Datavyu
version. We suggest coding an entire study using the same Datavyu version.

During the course of development, the Datavyu team releases several pre-release versions of the software
prior to releasing official stable releases. Pre-releases may contain new features not yet incorporated into the
main software, but are also more likely to contain bugs and to behave in unexpected ways.

To be notified of pre-release updates, simply check the “pre-release” checkbox in the updates window.
Due to the increased potential for data loss or bug-related issues, you should only choose to use pre-releases
if you need an unreleased feature, or are grappling with a bug in the existing stable release that is fixed in
the unstable release.

Ultimately, all new features in the pre-releases are brought together and released as a new stable release.

Now that you have installed Datavyu, you can move on to Datavyu’s Getting Started Guide.

1.2 Getting Started

Datavyu is a powerful tool that enables behavioral researchers to code observations from their video for
analysis. Designed by researchers for researchers, Datavyu provides an intuitive interface for working with
data sources and recording observations, and includes an API for more advanced data manipulation.

1.2.1 The Datavyu Interface

When you first open Datavyu, Datavyu will check if you have the latest version. If there has been a new
release, Datavyu will prompt you to update your version.

When you launch Datavyu, you will see two windows: the Controller, and a blank spreadsheet. If you
add a data source, a third window containing the data source will appear.

The following sections describe each component of the Datavyu interface.

Media Player

The Media Player is the window that presents the data source that the user is working with.

Adding a video or other data source to Datavyu is as easy as clicking on the Add Data... button in the
Controller. For a more detailed overview of adding data sources see: Add Data.

Once you've added a data source, it’s time to add columns, create observations, and write scripts. The
tutorials are there to guide you.

Controller

The Controller allows users to control the playback of their data source and create observations in the
spreadsheet. Quite literally, it controls the Media Player, the window that contains the video data.

http://www.apple.com/quicktime/download/

DatavyuSampleVideo.mov

Controller
Lock all Add Book Snap Region Clear Region
Add Data... 00:00:00:000 (@ Ox W
setcell | | point | | setesl
oniet | | el | | offer |
5
- > Lol 00:05:000
\rewind | | ply | |forward | | po back
5 &
-* L -»> 00:00:000
\shwatle | | Stop | |sheske | | find
T 1 ¥ Tater
«dl 1w [2
) o) L IR i
v creae B - _
create new acll scodl | | =W Hide Tracks I
andsctomset | | offet | | _ml

The keypad can be found on the left side of the controller. This section maps directly to the number pad
on your keyboard, or to an external number pad if your keyboard does not have one and you’ve connected
one to your computer. These keys control playback, and also enable users to set the cell onset and cell offset,
create new cells and navigate within the data source. The Add Data... button enables you to add a data
source.

For more about the Controller, and a detailed description of its functionality and features, see Controller
Overview.

Spreadsheet

The Datavyu spreadsheet is where users record observations from the data source.

MomSpeech | InfantSpeech | MomObject | BabyObject |
00:00:09:075 00:00:11:855 00:00:13:299 00:00:14:490 00:00:10:710 00:00:21:450 00:00:07:491 00:00:10:990
(Thanks. What is this? [Russian]) |(Tchai) (cup, .) (cup, banana)
00:00:14:322 00:00:15:840 00:00:36:795 00:00:37:521 00:00:34:023 00:00:37:485 00:00:11:055 00:00:21:780
(It's tea?) (no) (spoon, .) (banana, .)
00:00:16:929 00:00:20:058 00:00:37:554 00:00:39:448 00:00:39:235 00:00:48:906 00:00:21:813 00:00:25:725
(No... | want coffee. [Russian]. (no) {cup, .) (cup, banana)
Bring me some coffee.) 00:00:45:276 00:00:47:379 00:00:48:939 00:00:54:648 00:00:26:250 00:00:29:960
00:00:29:997 00:00:33:805 |([Russian]) (cup, banana) (pitcher, banana)
([Russian]) 00:01:47:184 00:01:48:719 00:00:54:681 00:01:20:766 00:00:30:555 00:00:39:865
00:00:36:861 00:00:38:789 |([Russian]) (banana, .) (cup, banana)
(stirit.) 00:02:09:030 00:02:10:764 00:01:20:780 00:01:25:734 00:00:39:930 00:00:48:906
00:00:40:029 00:00:42:091 | (And pappy) (cup, banana) (banana, .)
g”;‘r:r‘:g am | going to do with this 00:01:25:767 00:01:34:479 00:00:53:795 00:01:09:630
- (cup, .) (cup, .)
(Drink it?}DD:DD:‘J‘Z:”l HPHEER 00:01:34:611 00:02:22:560 00:01:09:663 00:01:14:580
. (cup, banana) {cup, spoan)
(Can you Dgijnrni3:5908rienruﬁﬁnkz?::??9 00:02:22:593 00:02:33:622 00:01:14:613 00:01:17:220
L (cup,) (cup,)

there?)
00:01:17:253 00:01:21:378

{cup, spoon)

00:01:25:734 00:01:31:641
(banana, .)

00:01:31:665 00:01:33:456
(cup, banana)

00:01:33:522 00:01:39:363

00:00:46:959 00:00:49:682
(Don't do it the whole way.)

00:00:51:109 00:00:53:292
(Can you pour me some milk?)

00:00:53:790 00:00:55:556
(Pour me some milk)

00:01:06:710 00:01:13:192

([Russian]. Stir it. Stir it with the (cup.)

spoon. Yep.) 00:01:39:396 00:01:42:299
00:01:20:520 00:01:22:868 (cup, pitcher)

{I'm going to drink it now?) 00:01:42:300 00:01:45:369
00:01:23:605 00:01:25:081 (cup, .)

([sipping sounds]) 00:01:45:402 00:01:53:124

(cup, spoon)

nn=N1-75:-155 NN-N1-27-R4A5

Figurel: This spreadsheet has four columns: “MomSpeech”; “InfantSpeech”, “MomObject”, “BabyObject”.
Each column has numerous coded cells.

Being able to Configure Columns and Codes enables coders to record observations and link them directly
to timestamps in the data source. Each user-defined column is represented by a column in the spreadsheet,
and observations within a column are sorted in chronological sequence. Looking horizontally across the
spreadsheet columns shows what was happening at a given point in time in the data source. Looking
vertically down a column shows the sequence in which the observations occurred.

The Spreadsheet Overview document describes the spreadsheet in more detail.

Controller Overview The Controller enables users to manipulate the playback of their data source, and
create new cells as they record their observations.

8NN Controller
Lock all Add Bookmark Snap Region Clear Region

Add Data... 00:00:00:000 @ 0x V

ear I

set oell point set cell d'-J'| Keypad

onset | | ol | | offeer |

g]

- > » 00:05:000
\rewind | | phy | |foreand | | go back

) 5 13

-+ u - 00:00:000
\shwatle | stop) |shestle | | fird Tracks
T t] ¥ —

-l e > 00:0t

) o) L LEPEEELECEEEEEEET P TR TP EEEEREETPEEEER A

o create a ' B

I

-
create new oell st cell il
andwteomet | | ot | |1 ||

Hide Tracks

The Controller has two main areas: the keypad on the left, which maps directly to your keyboard, and
the Timeslider on the right, which represents the current playback position.

The following sections describe the two areas in detail, and provide a useful reference for working with
the Controller.

Keypad

Important: You cannot use the number keypad for inputting numbers into Datavyu. It will only perform
the actions described here.

The Controller’s keypad maps directly to the number pad on your keyboard or external keypad and the
on-screen representation helps users remember what key performs what function. When you press a key
on the keypad, a visual indicator onscreen mirrors the keystrokes. Some keypads may change the ordering
of certain keys: for instance, some keypads may have a Num Lock key rather than a clear button but the
Controller takes different keyboards into account and simplifies the keys as much as possible. Familiarize
yourself with both the Datavyu controls and your keypad to maximize coding efficiency.

Playback Controls

e jog left (1): moves the playhead back one frame. If the frame rate is not set, jog will move the playhead
in one second increments. Holding down jog left plays backward slowly.

e pause (2): pauses playback. Pressing pause again resumes playback. Pause only works if play (8) has
first been pressed.

e jog right (3): moves the playhead forward one frame. If the frame rate is not set, jog will move the
playhead in one second increments. Holding down jog right plays the source forward slowly.

o shuttle left (4): rewinds, initially at 1/32 of playback speed. Repeatedly pressing the shuttle left key
increases the rewind speed to a maximum of 32 times playback speed.

e stop (5): stops playback.

e shuttle right (6): fast forwards initially at 1/32 of playback speed. Repeatedly pressing the shuttle
right key increases the fast forward speed to a maximum of 32 times playback speed.

e play (8): starts playback.
In addition, shift find (+): jumps to the time of cell offset.

Note: For users of Mac OS X: recent versions of OS X do not allow you to hold down a key as a default.
Instead it brings up a mini-menu to help you select common accents for that letter. If you want to be able to
jog by holding down the 1 or 3 keys, you will need to open your Terminal and run the following command:

10

defaults write -g ApplePressAndHoldEnabled -bool false

To undo the change, run the same command but with -bool true rather than -bool false.

Coding Controls

o set cell onset (7): sets the onset for the current

cell.
Add Data... 00:00:00:000 @ 0x
e point cell (=): creates a new cell whose onset

and offset values are the playhead’s current - q
position.
Feall' J | iracKs
o set cell offset (9 and .): sets the offset for the .

o W TS

current cell. [2 1[. 4 (* 1 Jump back by
sat 1
onset | |_play J Loffset) | back J [00:00:05:000
e find (+): moves the playhead to the onset time N p . . . :
of the current cell, which is shown in the box to 44 ’ [" (%)
the bottom right of the find button. Selecting a shuttie) |_stop) lshutiie) |_fing
different cell will update this time. . o . .
‘l m ll l' mnlar Onsat
e go back (-): moves the playhead back by the
. . 00:00:00:000
amount of time set in the Jump back by box to \log J \pause L_log J
the right of the go back button. You can change Y m . 4 E Offaant
. . . ne
the increment by selecting that box and editing | mnﬁ'gucg"m Il et o) L o8l] [10.00:00:000

the value.

e new cell and set previous offset (0): creates a
new cell and sets its onset to the playhead’s Figure2: The keys highlighted in green are playback
current time. If the previous cell does not have controls. The keys highlighted in blue are coding-
an offset, adding a new cell with this key sets controls.
the previous cell’s offset to the current playhead
time, minus one millisecond.

e new cell and set current onset (Enter): creates
a new cell and sets its onset to the playhead’s
current time.

Tracks

Note: The tracks walkthrough video is a good way to familiarize yourself with this area of the Controller:

The Tracks area of the Controller helps you visualize where you are within a data source’s playback. You
can control the scale using the slider bar in the top right: moving it to the right zooms in, allowing you
to manipulate smaller time periods than would otherwise be feasible. You can also zoom in on a selected
region by clicking on the magnifying glass icon next to the slider bar. The red playhead shows the current
playback position.

You can choose to focus on a single region by moving the green region boundaries. Datavyu will start
playback from the leftmost boundary’s position, and stop at the rightmost boundary.

The Tracks area of the Controller also includes five buttons:

e Lock All: locks the tracks to prevent the user from changing the synchronization between multiple
tracks.

e Add Bookmark: adds a bookmark at the playhead.

11

800 Controller
Lock all Add Bookmark Snap Region Clear Region L
Add Data... 00:00:00:000 @ 0x — A _‘ | I
‘@ ° DatavyuSampleVide, Plﬂy head Zoomin Adjus t
it | |, B onregion timeslider
= 1 I[Z |]| dumovsen Aedp scale
onget play ofiset) [back 00:00:05:000 DatavyuVideo2.mo
‘“ 'm0 &=
-shunle Asrog ’shunle find _a ® q p
4a [n [[~ er=et SeeES RightregionL
log) lpause) |_jog 00:00:00:000 © =5 g o Lefi :
. =£2Q%°¢€ eft region boundary
h4 Offsat x 2 Q o b d
set B Sser | oSt et 00:00:00:000 E ﬁ_ oundary
wy

e Snap Region: sets the region to the length of the selected cell: the left boundary is placed at the cell’s

onset, and the right boundary at the cell’s offset. You can also use the ctrl + keyboard shortcut to
snap the region.

e Clear Region: removes the region boundaries. You can also use the ctrl - keyboard shortcut to clear
the region.

o Magnifying Glass icon: zooms in on the timeslider to focus exclusively on the snapped region.

Add Data... 00:00:00:000 @ 0x

point hid
cel tracks
— g .
= [4 :;
88 £ T 1
onget play offset back 00:00:05:000

) h Jump back by

§ 44)] 5» i m Steps per second

shuttle stop shuttle find

a [n [[o

jog pause jog 00:00:00:000

. b 4 Offset
ne

set”;?ré‘f&'}w - Ge 00:00:00:000

Add Data

Important: Do not use the VLC plugin because it is not fully implemented and tested. It has frame
accuracy problems and therefore is not suggested. Please use Quicktime instead. If your videos do not play
smoothly in Quicktime, please convert your videos if you would still like to use Datavyu.

Datavyu currently supports video through QT. To convert video file types, see: Convert File Formats.
If you are going to be working with multiple data sources see: Code Multiple Data Sources at Once.

Providing you have adequate processing power and a sufficiently strong graphics card, you should be able
to work with high-resolution video files without challenge.

To add a data source:

1. Click the Add Data... button in the top left corner of the Controller.

12

2. A file selection window will open. Select the data file you will be coding.

3. If the data source is a video file and Datavyu is unable to determine its frame rate, it will ask you what
the video’s frame rate is. You can determine the frame rate by opening the video in QuickTime Player,
and selecting Show Movie Inspector from the Window menu. The Inspector presents information about
the video. The frame rate is labeled FPS, or frames-per-second.

Datavyu uses the frame rate to accurately play and jog through videos, so it is important that you set
the correct frame rate.

4. If Datavyu cannot read your video’s frame rate or if it reads the wrong frame rate. You can manually
set the frame rate by double clicking on Steps per second and writing the correct frame rate. Please
press Enter and Datavyu will use your new frame rate.

See also:

e Spreadsheet Overview

o Tutorials

Spreadsheet Overview The Datavyu Spreadsheet is where coders record observations. The spreadsheet
is the core of Datavyu. Coders can record observations and link them directly to timestamps in the data
source when they Configure Columns and Codes.

For a brief introduction to some of the spreadsheet’s components and capabilities, watch the spreadsheet
walkthrough video:

Each user-defined column has its own column in the spreadsheet. Cells are column entries, boxes in the
column, where coders record their observation data as codes. Cells follow each other in sequence: looking
vertically down a column shows the sequence of observations for that column.

Datavyu automatically links the times coded in the spreadsheet to the current time in the data source.
This allows coders to record the onset and offset times of events in the spreadsheet. Coders can also jump
to a relevant time in the data source by selecting a specific cell in the spreadsheet and pressing find (+) on
the Controller.

Spreadsheet Tabs Datavyu allows users to open multiple spreadsheets at one time. When the program
opens, it opens a blank spreadsheet. This spreadsheet can be used to create a new file or it can be closed if
you are working on pre-coded spreadsheets. Feel free to open as many spreadsheets as desired.

Users can work on multiple spreadsheets at one time. When finished with coding, please be sure to save
each individual spreadsheet.

Columns Datavyu uses columns to group together related observations. In general, coders will code
the data source column-by-column meaning that they code one entire column before coding a new column.

Using the Code Editor, you can configure columns to represent any number of observations.

Columns have codes, which represent the feature that you are observing. For instance, a code could be
“Left hand touch”, or “Smiling”, or “Look left.” When coding the data source, coders can record the presence
or absence of these codes and/or potential values within them. Columns can have as many or as few codes
as you want. If you want to score durations without scoring codes, you can leave the default code as is and
ignore the <code01> prompt.

Also note that column names are limited to the letters of the aphabet, numbers and the underscore symbol
(but numbers and underscores cannot be the first character of the name) to eliminate potential confusion
in scripting and SPSS analyses. The column configuration tutorial provides instructions for configuring
columns.

13

800 Datavyu w1.0.4rev5 - Datavyu S|

et e ot e P s e e
MomSpeech InfantSpeech MomObject BabyObject Notes [
1 00:00:00:000 00:00:03:728 |1 00:00:00:000 00:00:00:000
(banana, .) (Mom and baby starts to play

drinking tea game)

2 00:00:00:418 00:00:00:418
(BabyLocation code: m = near
mom. p = near playset. w =
walking between locations.)

2 00:00:03:729 00:00:05:148
(banana, pitcher)

5 00:00:07:194 00:00:11:021
Column (banana, cup)
iy 00:00:10:710 00:00:21:450

cup, .} >
2 00:00:11:022 00:00:21'_&?!:ll |

(banana, .)

1 00:00:09:075 00:00:11:855
(Thanks. What is this? [Russian])

1 00:00:13:299 00:00:14:490
{Tchai)

2 00:00:14:322 00:00:15:840,
(It's tea?)

3 00:00:15:733 00:00:25:251
(Eating banana)

3 00:00:16:929 00:00:20:058

(No... | want coffee. [Russian].

Bring me some coffee.) Codes
(banana, cup)
3 00:00:25:813 00:00:26:465
(banana, .)

7 00:00:26:466 00:00:28:930
(banana, pitcher)

8 00:00:29:931 00:00:30:722
(banana, .)

21:384 00:00:25:812

4 00:00:29:997 00:00:33:805
([Russian])

9 00:00:30:723 00:00:39:830

Figure3: A typical Datavyu spreadsheet with an example of five columns and Temporal Alignment turned
on. Note the plus icon in the top right, which you use to add new columns.

14

Hide and Show Columns To hide a column, select the column by clicking on its name at the top
of the spreadsheet. The selected column will have a blue background. You can select multiple columns by
Cmd -clicking (on Mac) or Ctrl -clicking (on Windows). Then, in the Spreadsheet menu, select Hide Selected
Columns.

You can also control each column’s visibility from the Column List, which you access from the Spreadsheet
menu. The Column List shows all of the columns in the current spreadsheet, and includes a checkbox, which
you can use to toggle column visibility.

If you wish to show all columns you can do so with the Show All Columns menu option from the
Spreadsheet menu.

Rearrange Columns To rearrange the order of columns within the spreadsheet, simply click the
column’s name and drag it left or right to the desired location.

Cells Each cell represents an observation scored by the coder.
Minimally, Datavyu displays three values for each cell, but you can ignore one or all of these values.

e onset: the first time value displayed on the top of the cell. If you don’t code this value, the cell will
display the default value of 0:00:00:000. You can code a time value to mark the beginning of an event
or to tag the approximate time of an event.

e offset: the time value displayed on the top right of the cell. If you don’t code this value, the cell will
display the default value of 0:00:00:000. You can code a time value to mark the end of an event or to
tag the approximate time of an event.

e ordinal: the cell ordinal indicates the position of the cell within the column. The first cell (the one
with the earliest onset or the first cell you code if you do not mark onsets) would be number 1, the
second number 2, and so on. Ordinals are automatically coded and updated as you code your data
source. You will never need to set the ordinal.

The following image labels each component within a Datavyu cell.

Datavyu v1.0.4rev2 - DatavyuSampleSpreadsheet.opf

MomSpeech (MATRIX) [InfantSpeech (MATRIX) | MomObject (MATRIX) [BabyObject (MATRIX) | Notes (MATRIX) [BabyLocation (MATRIX) +
00:00:00:000 00:00:00:000 00:00:00:000 00:00:07:061
(Mom and baby starts to play p)

drinking tea game)

00:00:00:418 00:00:00:418
(BabyLocation code: m = near
mom. p = near playset. w =
walking between locations.)

00:00:07:062 00:00:10:580

ordinal onset offset
00:00:09:075 00:00:11:855 (w)
(Thanks. What is this? [Russian])
00:00:09:075 00:00:11:855 00:00:10:581 00:00:22:229
3 - a — (m)
—ams (Thanks. What is this? [Russian]) 00om15733 000025251
00:00:14:322 00:00:15:840 | (. p i) B (Eating banana)
(It's tea?)
the blue cell outline code
00-00-16:028 00-00:20-058 indicates that the cell is selected
(No... | want coffee. [Russian].
Bring me some coffee.}
00:00:21:813 00:00:25:725 00:00:22:230 00-00-24-881
(cup, banana) (w)
00:00:29:997 00:00:33:805 o 00002882 00:00:21:378
([Russian])
00:00:26:250 00:00:29:960
(pitcher, banana)
00:00:30:555 00:00:39:865
00:00-34.023 00.00:37.ag5 | (up. banana) 00:00:31:380 00:00:35:376
R S 00:00:36:795 00:00:37:521 (w)
00:00:36:861 00:00:38:789 | (1) (spaoon, .)
(Stirit.) 00:00:35:377 00:00:42:472
(m)
00:00-37-554 00.00-39:448 00:00:39:235 00:00:48:906
(no) cup, .)
00:00:40:029 00:00:42:091 eI (ELREO
(What am | going to do with this (banana, .)

now?)

15

Spreadsheet Customization Datavyu allows you to modify the spreadsheet by including options
that you can activate or deactivate, depending on your needs.

Zoom By default, the Datavyu spreadsheet uses one font size for the user-input codes in cells. You can
increase this font size by choosing Zoom from the Spreadsheet menu. However, the font size for the onset
and offset times do not change.

You can also modify zoom using keyboard shortcuts:

e cmd + / alt + zooms in
e cmd - / alt - zooms out

e cmd 0 / alt 0 resets the zoom to the default level

Temporal Alignment Temporal alignment is an important feature of Datavyu. When temporal
alignment is active, Datavyu groups cells based on their onsets and offsets, visually representing the period
of time each cell occupies. This Temporal Alignment video highlights the differences between active and
inactive temporal alignment:

Temporal alignment allows you to visualize what occurred at what time so you can compare event
sequences across columns. When coding, you should ensure that temporal alignment is active.

800 Datavyu v1.0.4rev5 - Datavyu Spreadsheet.opf* 800 Datavyu v1.0.4rev5 - Datavyu Spreadsheet.opf*
MomSpeech | InfantSpeech [MomObject | MomSpeech [InfantSpeech [MomObject
00:00:09:075 00:00:11:855 00:00:13:299 00:00:14:490 00:00:10:710 00:00:21:450
(Thanks. What is this? [Russian]) |(Tchai) (cup, .)
00:00:09:075 00:00:11:855 00:00:14:322 00:00:15:840 00:00:36:795 00:00:37:521 00:00:34:023 00:00:37:485
(Thanks. What is this? [Russian]) (It's tea?) (no) (spoon, .)
00:00:10:710 00:00:21:450 00:00:16:929 00:00:20:058 00:00:37:554 00:00:39:448 00:00:39:235 00:00:48:906
(cup,) (No... | want coffee. [Russian]. (no) (cup, .)
Bring me some coffee.) 00:00:45:276 00:00:47:379 00:00:48:939 00:00:54:648
00:00:29:997 00:00:33:805 [([Russian]) (cup, banana)
00:00:13:299 00:00:14:490 ([Russian]) 00:01:47:184 00:01:48:719 00:00:54:681 00:01:20:766
(Tchai) 00:00:36:861 00:00:38:789 | ([Russian]) (banana, .}
(Stirit.) 0 3 " - - g 3
RO S aa0 00:02:09:030 00:02:10:764 00:01:20:780 00:01:25:734
(Its tea?) 00:00:40:029 00:00:42:091 | (And pappy) (cup, banana)
° (What am | going to do with this 00:01:25:767 00:01:34:479
now? B
! (cup, .)
00:00:42:471 00:00:43:851 A
P 00:01:34:611 00:02:22:560
(Drink it?)

(cup, banana)
00:00:16:929 00:00:20:058 00:00:43:989 00:00:46:779

(No... | want coffee. [Russian]. 00:02:22:593 00:02:33:622

Bring me some coffee.) éﬁ:rﬁe;)ou poisRomelnl (cup, .)

00:00:46:959 00:00:49:682
(Don't do it the whole way.)

00:00:51:108 00:00:53:292
(Can you pour me seme milk?)

00:00:53:790 00:00:55:556
(Pour me some milk)

00:01:06:710 00:01:13:192
{[Russian]. Stir it. Stir it with the

— spoon. Yep.)

00:00:29:997 00:00:33:805
([Russian]) 00:01:20:520 00:01:22:868
(I'm going to drink it now?)

00:01:23:605 00:01:25:081
([sipping sounds])

00:00:32:023800100-37: 451 00:01:25:155 00:01:27:645
(spoon, .) (Where's your cup?)

00:01:31:050 00:01:46:280
([Russian]. Pour yourself some
tea. [Russian])

00:00:36:861 00:00:38:789 00:01:46:293 00:01:47:734
(Stir it.) (Stir it.)

00:00:36:795 00:00:37:521
(no)

Figured: At left is a spreadsheet with temporal alignment enabled; at right is the same spreadsheet with
temporal alignment disabled. Note that the cells contain the same information, it is only their presentation
changes. Note also that enabling temporal alignment makes it easier to code and alllows you to visualize the
relative length of events and their relations across columns.

Toggle Temporal Alignment You can toggle temporal alignment using the cmd T keyboard shortcut,
or by selecting Temporal Alignment from the Spreadsheet menu.

16

Keyboard Shortcuts We have provided a simple list of the major shortcuts used in the Datavyu
Spreadsheet.

Action Mac PC
Temporal Alignment ET Ctrl T
Snap to region Ctrl + Ctrl +
Clear Snap Region Ctrl - Ctrl -
Jump to Current Onset + +
Jump to Current Offset Shift + Shift +
New Cell to the Left &5 L Ctrl L
New Cell to the Right F R CtrlR
New File g5 N Ctrl N
Open 50 Ctrl O
Save =S Ctrl §
Save as 3, S, Ctrl, Shift, S
Quit Datavyu FQ
Hide Datavyu &5 H
Hide Other Windows a5, - H
Code editor: add column = M Ctrl M
Code editor: add code a5 A Ctrl A
[¢]|T|T|T|

Action Mac PC
Temporal Alignment CMD T CTRL T

Snap to Region CTRL NUM+ CTRL NUM+
Clear Snap to Region CTRL NUM- CTRL NUM-
Jump to Current Onset NUM+ NUM-+
Jump to Current Offset SHIFT NUM+ SHIFT NUM+

New Cell he Left CMD 1T _CTRL [
New Cell to the Right CMD R CTRL R

Spen (leig %5 (l%E 0
Save As Zf¥iD gHIEI S EIhE SHIFT S

Quit Datavyu CMD Q
Hide Datavyu CMD H

1.3 Tutorials

Datavyu Tutorials provide comprehensive guidance for common tasks you might wish to perform.

1.3.1 Add a Column

Add a column to create a new coding pass or a new set of codes.

1.3.2 Rename a Column

Rename a column to better reflect your coding pass, to increase transparency, etc.

1.3.3 Delete a Column

Delete a column if the information is no longer needed.

17

1.3.4 Configure Datavyu Codes

Configure columns and codes to set up a spreadsheet for coding.

1.3.5 Add Cells

Add cells while coding or annotating a video file.

1.3.6 Delete a Cell

Delete a cell if the information is not needed.

1.3.7 Export Data

Export Data from Datavyu into a statistical package, into a text file, etc.

1.3.8 Use Scripts to Automate Tasks

Use scripts to automate tasks such as inserting, deleting, and modifying cells.

1.3.9 Code Multiple Data Sources

Code multiple data sources at once e.g., two or more videos recorded at the same time.

1.3.10 Convert File Formats

Convert file formats into an appropriate format for Datavyu.

Add a Column

Datavyu represents sequences of events as columns in the spreadsheet.
Adding a column to your Datavyu project is simple. The following steps will guide you through the
process.

1. Open the Datavyu spreadsheet.

2. Click on the plus sign in the top right of the spreadsheet. The New Column window will open.
3. Input a name for it.

4. Select OK. The column will be added to the spreadsheet.

You can also add a column when you Configure Columns and Codes through the code editor.

Rename a Column

Datavyu provides four different ways to rename a column using the Datavyu user interface.

Rename Directly from the Spreadsheet
1. Open the Datavyu spreadsheet.
2. Double click on the column name. The New Variable Name window will open.

3. Type in the new name for the column, and press Enter or click OK.

18

Rename Using the Spreadsheet Menu You can also change a column’s name from the Spreadsheet
menu.

1. Open the Datavyu spreadsheet.
2. Select the variable name you wish to change. Selected variables have a blue background.

3. Select the Spreadsheet menu, and then Change Variable Name. The New Variable Name window will
open.

4. Type in the new name for the column, and press Enter or click on OK.

Rename From the Column List Using the Column List is another way you can change a column’s
name. The Column List also has the advantage of allowing you to change multiple column names in one
place.

1. Open the Datavyu spreadsheet.
2. Open the Spreadsheet menu, and then select Column List.

3. Double click on the name of the column whose name you want to change, type in a new column name,
and press Enter.

2

Rename Columns Using the Code Editor Datavyu’s Code Editor enables you to configure columns
codes, but you can also edit the names of your columns’ and codes’.

1. Open the Datavyu spreadsheet.
2. Open the Spreadsheet menu, and then select Code Editor.

3. Double click on the name of the column whose name you want to change, and type a new column
name. The spreadsheet will update automatically.

See also:

o Spreadsheet Tabs
e Add a Column

e Delete a Column

Delete a Column
To delete a column,
1. Open the Datavyu spreadsheet.
2. Select the column you wish to delete. The background will turn blue when selected.

3. Open the Spreadsheet menu, and select Delete Column.

Configure Columns and Codes

Each column may have a collection of one or more codes. Each code has a value that the coder inputs while
coding a data source.

Datavyu provides a Code Editor for configuring columns. Check out our video walkthrough of the Code
Editor’s features:

19

Open the Code Editor From the spreadsheet, click on the Spreadsheet menu, and then select Code
Editor.

800 Code Editor

| Add column | . (@ Delete |
| Add <code> | 4m Move <code> || Move <code> mp

MomSpeech{<transcript>)

InfantSpeech{<transcript>)

MomObject{<objectl>,<object2>)

BabyObject{<objectl>,<object2>)

Motes(<comment=)

BabyLocation{<loc01=)

| Close Window |

The Code Editor window will open and list all existing columns and codes. From here, you can add and
edit columns and codes.

Add a Column Click on the Add Column button. A new column called “column1” will appear in the list
of columns. By default, “columnl” has one code, “<code01>".
You can change the name of the column or code by double-clicking on its name and typing a new name.

Add Codes To add a code to a column, select the column. You’ll know you have selected it when its
background is light blue. Then, click on the Add <code> button.

You can change the name of the code by double-clicking on its name and typing a new name. To reorder
a column’s codes, select the code by clicking on it, and use the Move <code> buttons to move it.

Rename Codes To rename a code, open the Code Editor, and double click on the name of the code you
want to change, and type the new name. The spreadsheet will update automatically.

Remove Codes To delete a code, select it by clicking on it, and then click on the Delete button in the
top right.

Video Example

Note: The next video displays how to use the code editor to set up a spreadsheet from scratch.

Add Cells

Datavyu represents events as cells in the Datavyu spreadsheet. Cells relate to columns because they capture
the events that you are coding in that pass.

This tutorial assumes that you have already configured your spreadsheet to include a column. If you
have not already created a column in your spreadsheet, start with the Add a Column tutorial.

20

There are three ways to add cells to a Datavyu spreadsheet: using the spreadsheet menu, using Click to
Create New Cell in the body of the spreadsheet, or using the Controller keypad. Controller keys are ideal
for creating cells while coding a video. Note that Controller keys give you more options for how to insert
cells and onset /offset times.

Tip
Use the tab and shift-tab keyboard shortcuts or the arrow keys to easily navigate among codes within a
cell.

Add Cells Using the Spreadsheet Menu Using the spreadsheet menu to add cells to an existing column
is simple:

1. Click on the Spreadsheet menu and select New Cell. A new cell appears with the current play head
time as its onset and placeholders for any codes configured for the column.

2. Set the cell offset using the Controller.

You can also add cells to neighboring columns by selecting New Cell to Left or New Cell to Right.

Add Cells Directly in the Body of the Spreadsheet Adding cells to an existing column is simple:

1. Click in the gray Click To Create New Cell area. A new cell appears with the current playhead time
as its onset and placeholders for any codes configured for the column.

2. Record appropriate values for the codes. For the “trial” column in the example spreadsheet, that means
filling out the <trialnum> and <outcome> codes.

‘@00 Datavyu v1.0.4rev5 - Example Template.opf
id | trial | +] |
00:00:00:000 00:00:10:000 00:00:05:000 00:00:06:000
(1, 7/24/2012, 06/01/2010, 4) (=trialnum=, <outcome=)

3. Set the cell offset using the keypad on the Controller.

21

Add Cells from the Controller Adding cells using the controller is even easier than doing so from the
spreadsheet:

1. Navigate to the point in the data source that you want to be the cell’s onset. Use the new cell and set
previous offset (*'0") key on the keypad to create a new cell, set its onset based on your location in
the data source, and set the previous cell’s onffset to 1 ms prior all in one go.

or

Create a new cell using the new cell (Enter) key on the keypad. The onset will reflect your location in
the data source.

Delete a Cell
To delete a cell:
1. Open the Datavyu spreadsheet.
2. Select the cell you wish to delete. The cell will be outlined in blue when selected.

3. Open the Spreadsheet menu, and select Delete Cell.

Export Data from Datavyu

Datavyu provides an integrated export tool for exporting Datavyu data. To export your data, select the
File menu, and then select Ezport File. This outputs data to a CSV file that has one column for every code
in the spreadsheet: ordinal, onset, and offset, as well as user-configured codes.

If this format does not work for the analyses you need to perform, Datavyu supports Ruby scripting,
which you can use to create a script that exports the data in your desired format.

For a detailed guide to exporting data using Ruby scripts, see: Use Scripts to Export Data from Datavyu
in the Datavyu Ruby API documentation.

See also:

Use Scripts to Automate Tasks for instructions on running scripts within Datavyu.

Use Scripts to Automate Tasks

Datavyu provides a full suite Ruby scripting API to help you focus more time on coding and spend less time
performing routine tasks.

The Ruby API documentation guides you through writing scripts and provides context to help you become
an adept Ruby script-writer regardless of your programming experience. You can also watch a video version
of this tutorial:

Run Scripts Before you can run a script, you must write one. Refer to the Ruby API documentation for
scripting help.

1. Save your script as a .rb file, and put it somewhere you will be able to find again, such as a Scripts
folder on your desktop, or the location where you store your Datavyu files.

2. In Datavyu, select the Script menu. The Secript menu has two options: Run script and Run recent
script.

3. Select Run Script to choose a script that you have saved.
4. A file selection window will open. Navigate to the correct folder and choose the script you wish to run.

5. The Datavyu Scripting Console will open and run your selected script and display any errors that
may arise. If Datavyu reports a script error, use the provided information to find it.

6. You can close the Scripting Console when you receive a notification that the script has run successfully.

Scripts that you have recently run will be listed in the Run Recent Scripts menu in the Script menu.
This makes it easy to repeatedly run the same scripts.

22

Code Multiple Data Sources at Once

With Datavyu, you can code multiple data sources in one spreadsheet. For instance, if you have three
different camera views of an experiment, you can bring them together into Datavyu, and code them as one.

Adding multiple data sources is easy, but aligning them perfectly can take some effort. The following
sections guide you through the process.

Add Multiple Data Sources To add multiple data sources, simply add a data source using the Data
Viewer Controller’s Add Data button. You can add as many data sources as you desire.

800 Data Viewer Controller
Lock all Add Bookmark Snap Region Clear Region L | (S ——
Add Data... 00:00:00:000 @ 0x T
= o DatavyuSampleVide.|.
point | | hide ﬁ
_cell) |tracks
= » > - Jump back by aed £
‘ufn?eu |_play) ‘o?l?el, | beck | |D00:00:05.000 DatavyuVideo2.mo
“] " (=] ﬁ
\shuttle| | stop | [shuttle | | find) _a @ d] o °
R RINTRINT N ot
_jog) \pause) |_jog J 00:00:00:000
— L L
> Offsat

new cell 81
|_setBrévottser | | ofiset | (o8 |

Each data source has its own line in the tracks area of the Controller. You can select an individual data
source by clicking on its blue bar. When selected, the bar will turn green.

Align Tracks To code your multiple data sources, you need to align them so that times recorded in the
spreadsheet are accurate for all data sources.

You will need to locate an event that you can use as the basis for synchronizing your sources. For example,
if the lights flashed during the experiment, you could align the tracks at that point.

Align Tracks Manually To align your data sources, select one and drag it to align with the other
source. Increasing the zoom using the slider bar in the Controller can give you more granular control, and
facilitate precise alignment.

When you have successfully aligned your tracks, select Lock All. This prevents you from accidentally
desynchronizing the tracks. You can also lock a single track by clicking on its lock icon to the left of the
time slider. This can be helpful while synchronizing multiple tracks.

Align Tracks Using Bookmarks You can also use bookmarks to help synchronize tracks. If you
identify a distinct synchronization point, navigate to that point in the first track, and click the Add Bookmark
button. This will create a bookmark in that track.

Then, locate the same event in the other data source and bookmark it. When you drag the tracks to
align them, they will “snap” and align both bookmarks.

You can repeat this process with all the tracks that you need to synchronize, and then select the Lock
All button to lock their arrangement.

Saving Between Datavyu Uses When working with multiple data sources, Datavyu saves the data
source synchronization and bookmarks when you save the spreadsheet. This way, when you reopen the
spreadsheet to do more coding, or to work with the data, you will not need to re-synchronize the data
sources. This also helps ensure consistency between coding passes and reliability coders.

23

Convert File Formats

Datavyu currently supports video through QT and VLC.
If your data source is not directly supported by Datavyu, you may be able to convert it to a readable
format using Datavyu’s Convert Videos tool.

1. From the Spreadsheet, select the Controller menu, and then choose Convert Videos.

2. Select a source video. This will be the video you are converting.

3. Select a target video. This is the video that Datavyu will output or convert, your source video into.
4. Select Convert Video, and your video will be converted.

For help with data source conversion or other import issues, see Datavyu’s Support site.

1.4 Reference

1.4.1 Glossary

API
An APIT (Application Programming Interface) enables disparate software components to interact with
each other by specifying functions or routines to perform tasks. Datavyu’s API uses the Ruby
programming language.

argument
The information the user specifies to a method for a given parameter. For instance, “charlie” might be
the argument specified for the name parameter. See: Classes, Methods, and Parameters.

cell
A cell is a graphical representation of an observation. Cells are rectangles that stack in the columns
of Datavyu’s spreadsheet and contain the observation data that a coder inputs when coding a data
source.

class
A pre-defined object type, that has associated attributes and methods. See: Classes, Methods, and
Parameters.

class method
A method that belongs to a class and must be invoked on an instance of that class. See: Classes,
Methods, and Parameters.

code
Datavyu codes are column components that researchers are observing. Each Datavyu column may
have multiple codes for which a coder will record observations. For instance, a column called “step”,
which refers to walking, might have a “foot” code that would differentiate between left or right feet,
and a “direction” code that indicated if the person was stepping forward or backward.

coding manual
Documentation for codes in a Datavyu spreadsheet. Should be written as if instructing someone with
no prior information about the spreadsheet or project.

coding pass
A pass intended to fill in all fillable codes in a column. Coding passes can be aided by previous passes
so that work is not repeated.

24

http://datavyu.org/support/
https://www.ruby-lang.org/en/

column
Datavyu columns are phenomena or events that observations are collected about. Columns are key-
value pairs that associate a column name with a variety of codes. Columns can be general, such as
“trial” or “ID”, or can be specific, such as “step” or “hand”. Datavyu represents columns as a column in
the Spreadsheet.

comment
A code that consists of freeform text. Useful for recording unique observations in the data.

Controller
The Controller is a core Datavyu window that enables you to control playback of data sources, and to
record observations. See: Controller Overview

data
The audio or video files that are being studied.

frame rate
Frame rate (also known as frame frequency) is the frequency (rate) at which an imaging device produces
unique consecutive images called frames. The three main frame rate standards are: 24p, 25p, and 30p.

integer
A whole number. Integers are numbers that are not fractions, and thus, which have no numbers after
a decimal point.

key-value pair
A data representation that pairs “keys” (some thing you have data about) with “values” (the data
itself). A key-value pair could be “telephone” and “555-123-4567”, for instance. Sometimes, values are
represented as a list of values, or as an array.

method
A defined action that you can perform. Methods may accept arguments in order to perform their
specified tasks. See: Classes, Methods, and Parameters.

observation
An instance of the column that is being coded.

offset
cell offset
The end time of a cell.

onset
cell onset
The start time of a cell.

ordinal
The position of a cell within its column. The ordinal is indicated in the top left corner of each cell in
Datavyu.

parameter
The information that is methods use to perform their tasks. Parameters can be required or optional.
See: Classes, Methods, and Parameters.

playhead
The playhead indicates the current point of playback in the timeslider of the Controller.

region
The area of the timeslider that has been brought into focus using the timeslider’s brackets.

25

reliability column
A Datavyu column that is a copy of an original column used to ensure that the coded observations are
accurate.

script
A program that performs a specific task.

spreadsheet
The core Datavyu window where coders record observations. See: Spreadsheet Qverview

standalone method
A method that does not belong to a specific class. See: Classes, Methods, and Parameters.

string
In computing, a string is a linear sequence of characters. Strings can be random characters, words, or
sentences.

timeslider
The timeslider represents the length of the data source, and enables users to visualize where the
playhead is with respect to the entirety of the data source.

1.4.2 Naming Restrictions

Datavyu places certain restrictions on code and column names:
e Column names should not include periods.
e Column names must begin with a letter.
e The underscore is the only permitted special character.

e Datavyu also restricts certain names, making them unavailable for use. The following names cannot
be used as a column or code name:

If you're new to coding, or want to bone up on advice from the experts, consider the Best Practices Guide
for instruction on how best to harness Datavyu’s capabilities, and tips for starting to code behavioral videos.

26

Chapter 2

Ruby API

The Datavyu scripting API provides a scriptable interface to Datavyu’s spreadsheet, allowing you to
manipulate your data, export in any format you’d like, or check your data for errors.

Datavyu File Spreadsheet Controlles Script Window Help

© check-vald-<odet.rb oe— -
ano0 Datavyu v1.0.4rev] - SampleData-checkValidCodes.opf

i (MATRIX T wial (MATRIG T 3tep (MATRBO T+l

(1, 07/24/12, 06/01/2010, 4)

MtCodes = ("
directionCodes

step = getvardable

+ directionCodes)

Clear Region

Lock all Snap Region

A

27

2.1 Getting Started with APIs and Scripting

[HaNE! = chiechk-valid-codes.ab — soripis o
D dhnk-wakd -Codtal |

code arrays dade & varlable firgd g0 IF J3

siep = getvVarisbled=step™)

i fawr Eypod, repl W Code Brrayd WIEh your e vErleb

UidCodesi step, . ‘s ToobDodes, “Bt™; htCodes, “dire n" directionlodes)

foma 144 | Bty e SofTalta: 27| BES -

APIs, Application Program Interfaces, are collections of code that specify how software components
communicate with each other. Datavyu’s API uses Ruby programming language, a popular object-oriented
language. Ruby is reasonably easy to learn, and novice programmers can start writing scripts with minimal
programming knowledge.

Before you dive into the API Tutorials, though, you should familiarize yourself with what an API is,
learn about Ruby’s classes and methods and how they differ, and follow the Introduction to Scripting.

2.1.1 Introduction to APIs

APIs, Application Program Interfaces, are collections of code that allow software components to communicate
with each other.

The Datavyu API lets users write scripts in a Ruby programming interface that can modify the contents
of Datavyu spreadsheets.

Suppose you have a dataset that contains fifty Datavyu files and videos. After you analyze your data,
you realize that you want to go back and code a new pass for all of your files. Instead of manually creating
a new column in all fifty Datavyu files, you can write a script that will do it for you! The script can include
any and all desired codes within the column, and will save time and reduce the potential risk of error.

Or suppose you want to change the name of a code. You can use a script to make the changes across all
the relevant files.

Or perhaps you’d like a reliability coder to score 25% of each participant’s video. You can use a script to
create a ‘“reliability column” and insert every fourth cell (or a randomly selected 25% or any other metric)
for a specific column.

Or maybe you want to check each file for typos or impossible onset/offset times. Use a script for data
checking]!

Computers are ideally suited for doing repetitive tasks quickly and conistently. The Datavyu APT enables
aresearcher to perform these kinds of tasks programmatically so that doing a repetitive task becomes a matter
of writing a few lines of computer code and running the script.

Writing scripts with the API is straightforward and accessible to even a novice programmer. The ability
to use scripts to automate tasks greatly increases the ways that Datavyu can facilitate data coding and
analysis, and is well worth overcoming the initial learning curve.

Ruby and You

For a good introduction to Ruby, consider going through the Ruby in Twenty Minutes tutorial, which provides
a quick overview to working in Ruby.

28

https://www.ruby-lang.org/en/documentation/quickstart/

You do not need to be an experienced programmer or even understand the ins and outs of Ruby to be
able to write scripts with the Datavyu API. Following the API tutorials is a good way to become familiar
with scripting for Datavyu. With some practice, you will likely be able to customize the sample scripts for
your own purposes. However, gaining a grounding in some programming concepts will make it easier to
create your own scripts for your unique use cases and needs.

Consider Classes, Methods, and Parameters for an introduction to object oriented programming, classes,
and methods. Also, Introduction to Scripting discusses the requirements you should keep in mind when you
start writing scripts.

2.1.2 Classes, Methods, and Parameters

Ruby, the programming language that the Datavyu API uses, is an object- oriented language.

Classes

Object-oriented languages represent concepts, like Datavyu’s columns or cells, for instance, as “objects”.
Objects come in different types, or “classes”. For example, objects that represent numbers, strings (written
text), or Datavyu columns have different classes.

An object can have a variety of attributes depending on the data that pertains to the object. In Datavyu,
a cell object’s attributes would be its codes; a column object’s attributes might be its cells, its name, and
its onset and offset times. The class of an object defines what types of attributes a specific type of object
will have.

Thinking about Datavyu specifically, the “column” class describes the Datavyu columns. The “trial”
object in the example spreadsheet would then be an instance of the “column” class. This is in fact how
the Datavyu API works. The Datavyu API includes two classes to represent Datavyu concepts: RColumn
describes Datavyu’s columns, and RCell describes Datavyu’s cells.

Methods and Their Parameters

Whiile classes describe objects and their attributes, methods define actions that you can perform on an object.
The Datavyu API defines numerous methods to help you manipulate, modify, add, and delete data in the
Datavyu spreadsheets.

In order to work, many methods need additional information. For instance, getColumn(), retrieves a
column from a Datavyu spreadsheet so that you can modify or update it using your script. But it needs you
to tell it what column it should retrieve. Each method defines what information it can receive. These are
called parameters. getColumn() has one parameter: name, which is the name of the column that you wish
to retrieve.

Parameters are the types of information that you can specify for a method, and are specified in the
method’s definition (you can view all of Datavyu’s method definitions on the API reference page).

The information you actually provide when you use the method is called an “argument”. Arguments are
user-specified. For getColumn(), you might want to retrieve a column called “trial”; so “trial” would be your
argument for the name parameter. Again, parameters are part of the method’s definition, while arguments
are the information you provide to the method.

For example, the add _codes to_column() method enables users to add one or more codes to a column.
add _codes_to_column() has two parameters: column, the name of the column you want to update, and
*codes. The * indicates that the parameter is a list: so you can specify one (or more) codes as a list of
Strings.

Suppose you wanted to add two codes, “leftHand” and “rightHand” to the “arm” column. “arm” would
be your argument for the column parameter, and "leftHand", "rightHand" your argument for the *codes
parameter. column and code are specified in the add codes to column() method definition, and “arm”,
“leftHand”, and “right Hand” are your user-specified arguments.

29

Method definition:

add codes to column(column, *codes)

Method call:

add codes to column(”arm”,“leftHand”, “rightHand”)

Standalone Methods and Class Methods

There are two different types of methods: standalone methods and class methods. Class methods act directly
upon an instance of a specific class. Standalone methods perform actions on their own.

getColumn() is a standalone method that you use to retrieve a column from the Datavyu spreadsheet so
that you can modify it with your script. To retrieve a column called “trial” from the spreadsheet, you would
run:

getColumn("trial")

In contrast, add code() is a class method of the RColumn class, and is invoked on an RColumn object.
Assuming that you have already retrieved a column called “trial” from the spreadsheet, and assigned it to
an RColumn object, the following code would add the newCode code to the “trial” RColumn object:

trial.add _code("newCode")

Comparing them side-by-side can help highlight the difference:

getVariable("trial”™) VS, trial.add _arg("unit™)
Standalone Method instance Class Method
of class
Standalone Methods Class Methods
are of the format: are of the format:
method () instanceName.classmethod()

Understanding the difference between standalone and class methods will make it easier for you to easily
use the methods included in the Datavyu API.

Next Steps

Now that you have a grounding in the difference between classes and methods, parameters and arguments,
and know how to invoke both standalone and class methods, consider our Introduction to Scripting for tips

30

before diving into the API Tutorials.

2.1.3 Introduction to Scripting

This detailed guide describes how to write Ruby scripts to automate tasks in Datavyu and to ensure reliable
coding.

Classes, Methods, and Parameters provides an overview of the methods and classes of the Datavyu API.
For a more in-depth discussion of each particular method and function, refer to the Reference documentation.

Recommended Text Editors

Ruby scripts are simply text files with a .rb file extension. You can write scripts in any text editor, including
built-in ones like Notepad or TextEdit. However, while those programs are adequate for scripting purposes,
modern text editors make scripts much easier to read by providing syntax highlighting, which can make a
world of difference when attempting to debug an issue.

& add-cells-to-variable.rb

b add-cells-to-variable.rb @ add-cells-to-variable.rb |
i | require 'Datavyu ART.rb!
h u variable "trial" into Ruby variable called trial. 2| begin
trial = getVariable("trial") 3 # Load the Datavyu variable “trial" into Ruby variable called trial.
¥e need to loop 5 times from @ to 4 i trial = getVariable("trial"}
for i in B..4 5
Calculate the onset time that we want to set 6 # We need to loop 5 times from @ to 4
Remember that all times in Datavyu are milliseconds - for i in 0..4
time = i + 1000 * 60 8 # Calculate the onset time that we want to set
Create the new cell. 9 # Remember that all times in Datavyu are milliseconds
cell = trial.make_new_cell() 10 time = i * 1000 * 60
11
Now change the onset of the cell we just created 1 # Create the new cell
cell.change_arg("onset", time) .
end 13 cell = trial.make_new_cell(}
14
Now that the loop is finished (we're outside of the end), write 15 # Now change the onset of the cell we just created
it back to the database " "
16 cell.change_ar onset", time.
setVariable(trial) ™ d ge_arg!)
end en
18
19 # Now that the loop 1s finished (we're outside of the end), write
20 # It back to the database
21 setVariable(trial)
22 4| end
23
Line: 23 | Ruby + | SoftTabs: 2w | %% 3| Nosymbols to show for current document. 5

Figurel: At left: TextEdit (Mac OS X). At right: TextMate 2 (Mac OS X) with “Mac Classic” theme. Note
that add-cells-to-variable.rb is open in each editor.

To take advantage of syntax highlighting and coding support, we recommend installing and using one of
the following programs for editing Ruby scripts:

e Windows:

— Notepad+-+ (free and open-source)

— Notepad2 (free and open-source)
e Mac OSX:

— TextMate 2 (free and open-source)
— gedit (free and open-source)
— TextWrangler (free)

e Linux:

— gedit (free and open-source)

— kate (free and open-source)

31

http://notepad-plus-plus.org/
http://www.flos-freeware.ch/notepad2.html
https://api.textmate.org/downloads/beta
http://projects.gnome.org/gedit/
http://www.barebones.com/products/TextWrangler/
http://projects.gnome.org/gedit/
http://kate-editor.org/

Tip: Most text editors determine what kind of syntax highlighting to use based on the file extension.
Please ensure that your Ruby script files end with the “.rb” extension so you see syntax highlighting.

General Principles

Each cell that you create with the Datavyu APT has three inherent codes: onset, offset, and ordinal. Each
cell also has at least one user-specified code.

onset, offset, and ordinal are all Integers, while the user-specified codes are Strings.

onset and offset are measured in milliseconds from the beginning of the video, starting from 0.
For instance, an onset time of 00:02:20 translates to 140000ms.

Since user-specified codes are strings, you must convert any codes that you wish to perform calculations
on to a numeric type. This is easily done with Ruby using the to i method for integers, or the to_f method
for floating point numbers.

Example
Create a variable, varl whose value is “5”. Since the number 5 has quotation marks around it, it is a
string.

varl = "5"

If you print var, you’d see that it is “5”. Create a new variable, var2 from varl using to_i to convert the
“5” to a 5.

var2 = varl.to_i

Print var2 and see that it is a 5 without quotation marks:

print var2

Tip: Ruby provides two options for printing to the console: the p command and the puts command. When
in doubt, use p, as it prints arrays and lists in a more readable format, rather than mashing them all together
like puts does. Try printing a list such as [5, 6, 7, 8, 9] using both p and puts to see the difference.

p [5,6,7,8,9]
puts [5,6,7,8,9]

Basic Script Format

Tip: Scripts are very sensitive! When programming, every quotation mark, underscore, period, and slash
serve a purpose. You must use the correct syntax or the script will not work.

Code and column names are also case sensitive. If you have a column in a spreadsheet called “trial”,
requesting “Trial” will not work.

All code names in Ruby must be lowercase. Codes with uppercases have special meanings.

All Datavyu API scripts must include the following line at the top:

require 'Datavyu_APLrb'

This require statement loads all of the helper functions that enable your scripts to interact with the
Datavyu spreadsheet.

32

http://ruby-doc.org/core-2.0.0/String.html#method-i-to_i
http://ruby-doc.org/core-2.0.0/String.html#method-i-to_f

In general, the rest of the script code goes between begin and end tags, making the general format as
follows:

require 'Datavyu_APLrb'
begin
Get the columns that we want to work with

Do something to those columns

Write any changes to those columns back to the spreadsheet
end

Tip: Anything that comes after a # character on a line in Ruby is a comment, which means it will not
execute any specific task. Comments are useful for leaving notes that explain what the code is doing so that
when you return to an old script you remember what you’re looking at. The examples in this documentation
use comments extensively.

Now that you are grounded in the Datavyu Ruby API mechanics, consider the API Tutorials or Datavyu
Ruby API Reference.

2.2 Core Documentation

The Datavyu Ruby API’s core documentation is organized into tutorials and reference pages. Tutorials
provide step-by-step instructions for accomplishing common tasks with Ruby scripts. The Reference
documentation provides a detailed reference for every class and method included in the API. This can
be useful if you are uncertain about how to use a specific method or want an example of its use.

2.2.1 API Tutorials
Before You Start

Sample Data Most of the following tutorials use Example-Template.opf as their basic data file.

The example template contains two columns: “id”, whose codes describe basic information such as subject
number, test date, birth date, and condition, and “trial”, which has two codes: trialnum and outcome.

The example has one cell in the “id” column and no cells in the “trial” column. Most of the Datavyu
tutorials use the example template as their basis, so if you want to follow along directly, you can download
it, and then open it with Datavyu (using File > Open and selecting the file from your hard drive).

Most Datavyu scripts begin by loading a column from Datavyu using the getColumn() method. Before
moving on to the larger tutorial list, you should familiarize yourself with loading Datavyu columns.

Load Datavyu Columns To load columns, Datavyu provides the getColumn() method. getColumn()
takes one argument, the name of the column in Datavyu, and returns the Ruby representation of the column,
which you can work with.

The following script retrieves the “trial” column from the Datavyu spreadsheet and assigns it to an
RColumn object called trial.

require 'Datavyu_APLrb'
begin
Assign the Datavyu column "trial" data to a new Ruby object called trial.

trial = getColumn("trial")
end

33

The left side of the method is the name of the Ruby object; the “trial” in the parentheses is the argument
passed to getColumn() (the name of the Datavyu column).

trial = getVariable("trial")

T T T

Ruby variable method method argument:
the name
of the Datavyu column

Now that you’re familiar with the sample data and know how to acquire data from Datavyu, you’re ready
to start scripting. The following tutorials will guide you through common tasks.

Tutorials

Add a New Column Add a column to create a new coding pass or a new set, of codes.

Add Codes to a Column Add codes to a column to prompt coders which behaviors to score.

Add Cells to a Column Add cells to a column while coding or annotating a video file.

Check for Coding Errors Check for coding errors such as typos, impossible vlaues, unlikely values, etc.

Use Reliability Coding to Check Data Accuracy Check Inter-rater Reliability to Improve Data
Accuracy to determine whether more than one coder would score the data the same way.

Export Data Using Scripts Use scripts to export data from Datavyu into a text file or a spreadsheet.
for statistical analyses.

Convert an OpenShapa Script to Datavyu Convert an OpenSHAPA script to the Datavyu format to
update an old file.

Perform Operations on Multiple Files Batch operations on multiple files to do the same operation on
more than one file.

Convert a MacShapa file to Datavyu Convert MacSHAPA files to work in Datavyu so that you can
use the new, supported software.

Add a New Column Much like Add Cells to a Column or Add Codes to a Column, the Datavyu API
allows you to create a completely new column using the createColumn() method. createColumn() takes at
least two parameters: first, the name of the new column, followed by a list of the names of the new codes
contained in the column.

For example, suppose you wanted to add a column called “look” to your spreadsheet. And you wanted
“look” to contain two codes: direction and target.

1. Set up the script, and create a new column with its two codes. You will need to create a Ruby object
to hold the data until you are ready to write it back to the spreadsheet. In this example, the Ruby
object is called look:

34

require 'Datavyu APLrb'
begin
Create new column
look — createColumn("look", "direction", "target")

Write the new column back to the spreadsheet and end the script:

require 'Datavyu APLrb'
begin
look = createColumn("look", "direction", "target")

Write the new column to Datavyu's spreadsheet.
setColumn(look)
end

Add Codes to a Column Adding codes to a column is a straightforward scriptable task. The Datavyu
API provides the add code() method for adding codes.

add_code() takes the names of the Datavyu codes you are adding as its parameters. This example adds
a code called unit to the “trial” Datavyu column in the sample data. The unit code might represent the unit
of measure used during an experiment.

1.

Start by setting up the script and assigning the Datavyu column “trial” to a variable using getColumny().
You can call your variable whatever you want to. We're calling it trial in this example:

require 'Datavyu APLrb'

begin
Retrieve "trial" data from Datavyu spreadsheet and assign it
to a new Ruby variable
trial = getColumn("trial")

Add the wunit code to trial using add _code():

require 'Datavyu APLrb'
begin
trial — getColumn("trial")

Add the "unit" code to the trial variable
trial.add__code("unit")

Write the changes back to the Datavyu spreadsheet using setColumn() and end the script:

require 'Datavyu_APLrb'
begin
trial = getColumn("trial")
trial.add__code("unit")

Write the changes back to the Datavyu spreadsheet
setColumn(trial)
end

Add Cells to a Column Populating a Datavyu column with cells is another common task that you
can automate with scripts.

35

Suppose that you want to code behaviors within 1-minute long blocks. Rather than have the coder
manually insert each cell, you can write a script that will insert a “block” cell every minute, with the onset
set to the correct trial start time.

1. Set up the script and create the Datavyu column you will be working with into a Ruby variable. We’ll
call it block here, but you can call it whatever you want to:

require 'Datavyu APLrb'
begin
Creste the block column
block = createColumn("block", "code™)

2. Create the five cells using a loop.

Programming 101

Loops are types of code that tell Ruby to do something multiple times. Let’s break down the for loop
from the following example for those who aren’t familiar with loops:

foriin 0.4
<do stuff >~
end

Essentially, this says, “let i = 0, <do stuff>, then, for i = 1, <do stuff>>. Then again for i = 2, for i =
3, and for i = 4. Once i = 4, stop doing stuff.” The 0..4 represents “from 0 to 4, inclusive”.

If you wanted to do something ten times, your loop could read for i in 0..9 or for i in 1..10, or for i in
99..108.

In this case, you will use the value of i to set the onset time of each cell, so having it start at 0 and go
to 4 makes sense.

Loop 5 times from 0 to 4, calculating the onset time to set for each new cell.

a. Since Datavyu API uses times in milliseconds, convert i (the minute marker) to milliseconds:

require 'Datavyu_APLrb'
begin
block — createColumn("block", "code")

foriin 0.4
+ Calculate the onset time in milliseconds

time = i * 1000 * 60

b. Then, create the new cell using make new_cell() and store the cell as a Ruby object. For
simplicity, we’ll call it cell:

require 'Datavyu_APLrb'
begin

block = createColumn("block", "

code™)

foriin 0.4
time — 1 * 1000 * 60

Create a new cell, called ‘‘cell*
cell — block.make new _cell()

c. Set the onset of cell to the value of the time variable using change code(), and end the for loop:

36

require 'Datavyu_APLrb'
begin
block = createColumn("block", "code™)

foriin 0..4
time = i * 1000 * 60
cell = block.make new _cell()

Set "onset" to the value of the ‘‘time‘‘ variable
cell.change code("onset", time)
end

3. Now that the loop is complete, write the changes back to the Datavyu spreadsheet and end the script:

require 'Datavyu APLrb'
begin
block = createColumn("block", "code")

foriin 0..4
time =1 * 1000 * 60
cell = block.make new _cell()
cell.change code("onset", time)
end

Write change back to the Datavyu spreadsheet
setColumn(block)
end

Check for Coding Errors Datavyu scripts have the ability to check for coding errors to make up for
potential human error. Inputting invalid codes is a common coding mistake. For example, a coder might
accidentally input an “h”, when only “j” or “k” are acceptable values. Using scripts, coders can double-check
their work for errors and fix them early on.

Datavyu API provides the checkValidCodes() method to check for coder errors. checkValidCodes()
requires at least three arguments: the name of the column it will verify, the location that it will output
the results to, and at least one key-value pair. Key-value pairs consist of a “key”, the name of a Datavyu
code, and a “value”, which is an array of valid values for that code. checkValidCodes() then checks each code
(key) against its list of valid values (the values).

The following examples check the look column against its codes. You can download the sample data used

in this tutorial from here.
Check Code Validity and Output to the Console

Basic Format

Example

require 'Datavyu_APLrb'
begin
Check for errors. Notice the square brackets. These denote
lists. The basic format is: "columnName", "dumpFile",
"codename", ["validcodel", "validcode2", etc],
"code2", ["validcodel", "validcode2", etc], ...

(continues on next page)

37

continued from previous page
g

checkValidCodes("look", "", "direction", ["1", "r"], "target", ["a", "b"])

end

Breaking down the function call makes it easier to follow what is happening. Recall that
checkValidCodes() takes (at least) three arguments: the name of the Datavyu variable it will be checking,
the location that it should direct the output to, and at least one key-value pair.

In the example, we have:

checkValidCodes("look", """, "direction", ["1", "r"], "target", ["a", "b"])

"look" is the name of the variable to check.

"" is the location that we want to export the output to. Using "" indicates that we do not want to

write the results to a file, and that it should instead display in the Datavyu Scripting Console.

"direction", ["1", "r"] is the first key-value pair, which specifies that the “direction” Datavyu code

should only have the values “1” or “r”.

"target" , ["a", "b"] is the second key-value pair, which specifies that the “target” Datavyu code should
only have the values “a” or “b”.

Advanced Format You can perform the same verification by first assigning the valid codes to objects.
This makes it is easier for human readers to parse the script, and makes it easy to modify or update in the
future.

1.

Set up the script:

require 'Datavyu APLrb'
begin

. Assign each list of valid codes to a variable:

require 'Datavyu APLrb'
begin
Store each of the valid code arrays into a object first
so that it is easier to read
directionCodes = ["1", "r"]
targetCodes — ["a", "b"]

Check for coding errors using checkValidCodes(), replacing the lists with your newly-created objects,
and end the script:

require 'Datavyu APLrb'
begin
directionCodes = ["1", "r"]
targetCodes = ["h", "t"]

Check for typos, replacing the code arrays with your new variables:
checkValidCodes("look", "", "direction", directionCodes, "target", targetCodes)
end

38

Check Code Validity and Output to a File checkValidCodes() can write the results of its
verification to a “dump file”. Datavyu will create an output file if you specify a path in the dumpFile
parameter.

1. Create an object that holds the path that it should output to using Ruby’s File.expand path method,
which converts a relative path, like ~/Desktop/file.txt to an absolute path name, which contains the
root directory, and all sub-directories, like /Users/alice/Desktop /file.txt

The following commands create a variable called output that holds the absolute path to a file on the
Desktop called output.txt:

require 'Datavyu_APLrb'
begin
output — .expand_path("~ /Desktop /output.txt")

2. Call checkValidCodes() on the “step” column, passing output as the argument for the dumpFile
parameter:

require 'Datavyu_APLrb'
begin
directionCodes = ["1", "r"]
targetCodes — ["a", "b"|

output — .expand_path("™ /Desktop/output.txt")
Check for errors, specifying the output variable as the dumpFile parameter

checkValidCodes("look", output, "direction", directionCodes, "target", targetCodes)
end

When the script ends, the output.txt file will be created on the Desktop, containing the results of the
code checking. For the sample data, it should find one error, and the output should resemble:

Code ERROR: Var: look Ordinal: 2 Arg: direction Val: rj

Video Example of Checking for Errors This video displays one way to check for errors (typos,
impossible values, etc.) within a spreadsheet.

Check Inter-rater Reliability to Improve Data Accuracy Reliability coding verifies that the
desired codes are observable and that the coders are accurately interpreting events. With reliability coding,
two coders separately code the same data source. You can create a reliability column, which the second
coder can use to reccord his or her observations. After both coders have coded the same column, they can
compare their codes and determine their inter-rater reliability.

Note: While it may be tempting to have the reliability coder code the data source in a new spreadsheet,
you should endeavor to keep all codes for a given data source in a single spreadsheet. This facilitates analysis
and ensures that like data are kept together. To prevent the reliability coder from seeing the original coding
pass, you can hide the original coded column.

Make a Reliability Column In general, when creating reliability columns you create blank cells that
correspond to the cells created during the first coding pass. This ensures that the two coders will have
observed the same events in the data stream and allows easy comparison of the two coding passes.

The Datavyu Ruby API provides the makeReliability() method for creating reliability variables.
makeReliability() has four parameters:

39

http://www.ruby-doc.org/core-1.9.3/File.html#method-c-expand_path

[¢][1ILIL]

rrnnhnn
1OF

ipt
relname String or Ruby column from getColumn() the name of the new reI|ab|I|ty column you will

column to copy Strmg The name of the column that we want to create a reI|ab|I|ty column from
(i.e. the existing coded column)

7T
multlple to keep Integer (optlonal) Number of cells to Sklp a value of 2 |ncludes every other

Tip: Copying the onset of the original column to the new reliability column in the args to_keep parameter
makes it easier for the second coder to navigate to the correct locations in the data source, and to code the
same events as the original coder.

When making a reliability column, you should also think about how you are going to compare the columns.
checkReliability(), which you use to check reliability. It requires that each pair of cells has a unique identifier
that link them together. For example, a trial number coded into each cell would match corresponding cells,
even if only a subset of cells were included in the reliability variable.

The following example uses the sample data to create a new reliability column called “trial rel” from
its “trial” column, skipping every other cell, and copying over the onset and trialnum codes so that the
reliability coder doesn’t have to recode onset and trial numbers.

require 'Datavyu APLrb'
begin

makeReliability("trial rel", "trial", 2, "onset", "trialnum")
end

Note: You do not have to write the variable back to the spreadsheet. makeReliability() automatically
writes its results to the spreadsheet.

Check Reliability Once the second coder has recorded their observations in the reliability column, you
can use checkReliability() to compare the primary and reliability columns cells. checkReliability() returns
the number of errors, and the percent agreement.

checkReliability() has four required parameters, and one optional one:

[e] 2L]L]

main_col String or Ruby variable from getColumn() The primary column that rel col will be

(‘nmr\nrnA aoamnst
A eS uau-n.u,

match arg Strlng The argument used to match the rellablllty cells to the prlmary cells Must e a

time _tolerance Integer Amount of slack permitted, in miIIiseconds, between the two onset and

dump_file String path or Ruby File object (optional) The full string path to dump the reliability
output to. This can be used for multi-file dumps or just to keep a log. You can also give it a Ruby

Eile obiect ifafilo.i .

Note: match arg is particularly important: for checkReliability() to know which cells to compare, it needs
to have some parameter that is unique to each pair of corresponding primary and reliability cells. In many
cases, the onset time of the cell can be used to match primary and reliability cases.

40

1. Create an object that holds the path that it should output to using Ruby’s File.expand path method,
which converts a relative path, like ~/Desktop/file.txt to an absolute path name, which contains the
root directory, and all sub-directories, like /Users/alice/Desktop /file.txt

The following commands create a variable called dump_file that holds the absolute path to a file on
the Desktop called relcheck.txt:

require 'Datavyu APLrb'
begin

dump _file = .expand _path("~ /Desktop /relCheck.txt")

#. Compare “trial” and “rel “ using checkReliability(),

with a 5ms time tolerance, and output the results to the dump _file:

require 'Datavyu_APLrb'
begin
dump _file = .expand_path("~ /Desktop/relcheck.txt")

Compare the "trial" and "trial rel" columns, using trialnumber as
their matching code and dump the results to a file on the desktop.
checkReliability("trial", "trial rel", "trialnum", 5, dump_file)
end

Video Example of Checking for Reliability This video displays one way to check for inter-rater
reliability for a single column in a spreadsheet.

Use Scripts to Export Data from Datavyu

Export Methods Datavyu supports numerous data export methods. The Ezport Data from Datavyu
section of the software guide tutorials demonstrates how to export data to a basic .csv file using the Export
File function. The Ruby scripting API offers users more flexibility in specifying different output file formats
for exporting data. This section covers two scripting approaches:

o A straight frame-by-frame dump detailing all observations associated with each frame.
e A nested export, which loops through each column and nests cells appropriately.

If you wish to export data from multiple files, refer to the Batch Operations on Multiple Files tutorial
for guidance on operations that involve multiple files.

Method : Frame-by-Frame Export A frame-by-frame export prints a row for every video frame in
the spreadsheet and looks across every column and code and writes the values for that frame. This method
is particularly useful for free-form coding projects that contain multiple columns that do not nest in time.
Using a frame-by-frame export makes it easy to import your data into other software packages (e.g., Excel,
SPSS, R).

Datavyu includes a script that performs frame-by-frame export on any file automatically. By default, the
script “Export Data by Frame” will appear in the “favorites” folder in Datavyu. To test the script, open the
sample spreadsheet in Datavyu. Once the spreadsheet has loaded, select the Script menu and then select
“Favorites/Export Data by Frame.rb”. That’s it! The script will output a .csv file to your desktop called
“framebyframe _export.csv” that contains all of the data from the spreadsheet that can be opened in the
statistical package of your choice.

If you would like to export multiple files frame-by-frame, there is a script included for that as well
(“Export Data by Frame — Multiple.rb”). Simply create a folder on your desktop called “datavyu_files” and

41

http://www.ruby-doc.org/core-1.9.3/File.html#method-c-expand_path

time MomSpeech.ordinal MomSpeech.onset MomSpeech.offset MomSpeech.transcript MomObject.ordinal MomObject.onset MomObject.offset MomoObject.objectl

84414 14 83605 85081 [sipping sounds] 6 80780 85734 cup
84447 14 83605 85081 [sipping sounds] 6 80730 85734 cup
34480 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84513 14 83605 85081 [sipping sounds] [80780 85734 cup
84546 14 83605 85081 [sipping sounds] 6 30780 85734 cup
84579 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84612 14 83605 85081 [sipping sounds] 6 80780 85734 cup
34645 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84673 14 83605 85081 [sipping sounds] 6 80780 85734 cup
84711 14 83605 85081 [sipping sounds] 6 30730 85734 cup
834744 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84777 14 83605 85081 [sipping sounds] [80780 85734 cup
34810 14 83605 85081 [sipping sounds] 6 80730 85734 cup
34343 14 83605 85081 [sipping sounds] 6 SO?SD_I 85734 cup
84876 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84909 14 83605 85081 [sipping sounds] 6 80730 85734 cup
84942 14 83605 85081 [sipping sounds] [80780 85734 cup
84975 14 83605 85081 [sipping sounds] 6 30780 85734 cup
85008 14 83605 85081 [sipping sounds] 6 80730 85734 cup
85041 14 83605 85081 [sipping sounds] 6 80780 85734 cup
85074 14 83605 85081 [sipping sounds] 6 80730 85734 cup
85107 3 80780 85734 cup
85140 [80730 85734 cup
85173 15 85155 87645 Where's your cup? 6 80730 85734 cup
85206 15 85155 87645 Where's your cup? [80780 85734 cup
85239 15 85155 87645 Where's your cup? 6 30730 85734 cup
85272 15 85155 87645 Where's your cup? 6 80730 85734 cup
85305 15 85155 87645 Where's your cup? 6 80780 85734 cup
85338 15 85155 87645 Where's your cup? 6 80730 85734 cup

place the files you want to export in that folder. Please note that the files should contain the same columns
and codes to export correctly.

These scripts will work on a variety of files and may fit many users’ needs. However, if you want to tailor
the scripts for your own purposes (e.g., changing the output file, input folder, or delimiter), you can find the
script files in your Datavyu installation folder under the “Favorites” folder.

Method : Nested Export A nested export exports data based on the nesting of cells. This is most
useful for spreadsheets whose cells group together. For instance, the following spreadsheet example has
three columns: “id”, “trial”, and “foot”. “id” is a participant ID, which might include codes that describe the
participant’s individual id code, gender, age, etc., “trial” is a column that marks each trial that occurred and
“foot” is a column representing observations recorded during each trial.

The cells, then, group together with an “id” cell covering the length of all trials. There are two trials in
the example that occur within the time limits of the “id” cell and there are several “foot” cells that occur
within the time limits of each trial.

To export data from this style of spreadsheet, we will use a series of loops, exporting a row of tab-
separated values for each cell in the “foot” column. Each row will include the “id” and “trial” data that the
“foot” cell nests beside. This spreadsheet has only one “id” cell, since all of the data in that spreadsheet is
for a single participant.

1. Set up the script, and then define where you are going to output the file to. You need to define the
location of the file (in this case, the Desktop, defined by out_file), and create a Ruby object to hold
the new file’s data as it outputs it, which we’ll call out:

require 'Datavyu APLrb'
begin

Defines the location of the file that we're going to be outputting
£ the spreadsheet data to - the file name is DataOutput.txt

and is located on the Desktop.

out_file = .expand_path("~ /Desktop/DataOutput.txt")

(continues on next page)

42

+ |

000 Datieyu v1.0.4revd - sarmple-nested-data.opl
W (MATRIX) frial (MATRIX) fioat (MATRIX)
1 000000000000 00:06:50:312 |1 00:00: 00000 0D: 0 38,504 |1 00000002: 143 00000:02:34%
{9999, m} (127, 9/23/2013) i
) 00000:21:216 00000:22:3348
(]
3 0000048682 00000:48-920
in
4 000109564 0000005904
i
5 00:01:13:270 00:0k:13:T46
{1}
b 0002:32:660 00:02:32:762
ir
7 00002:35:108 00003:35:244
(]
B 00002:-58: 296 00002:55:000
i
g 00:03:01:118 00003-00-65%
i
16 000300 TE4 0000302444
{1}
F. 00 05: 25686 00:06:50:312 |11 0005 25686 000525532
(128, 923/2013) {1}
12 0000526706 00005:26-900
1]
13 0005:43:298 00:05:43:400
ir
14 Oc05:44: 1458 00005:44:234
{1}
15 00006:27:328 0000&:27:430
ir
1& 000627838 000062 7-904
in
17 000628008 0000628144
(1]
18 00C06- 300660 D0:06:30:T682
i
19 00634468 00006:34:536
{1}
0 00006:34:67 2 00:06:35:59
ir

43

continued from previous page
g

Creates the file, and assigns write permissions so that the system
can write to it ('w')
out = File.new(out_ file,'w")

2. Retrieve the columns you want to output from the spreadsheet, and assign them to RColumn objects:

require 'Datavyu _APLrb'
begin

out_file — File.expand path("™/Desktop/DataOutput.txt")
out — File.new(out_ file,'w")

Retrieve the "id", "trial" and "foot" columns from the spreadsheet
and assign them to RColumn objects

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

3. Set up a series of for loops that we will use to iterate over each cell in the columns we’re interested in:

require 'Datavyu APLrb'
begin

out_file = File.expand path("~ /Desktop/DataOutput.txt")
out = File.new(out_ file,'w")

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

Set up a series of nested for loops, following the nesting
of the cells: "id", then "trial", then "foot".

This will iterate through every "cell"
in id, every cell in "trial", and every cell in "foot".

idcell, tcell, and fcell are temporary Ruby variables
/# that hold the data for a cell as the cell is iterated over.

for idcell in id.cells
for tcell in trial.cells
for feell in foot.cells

4. Write an if clause that checks if cells are nested. In plain English, this if statement checks if the onset
of the foot cell (fcell) occurs after the onset of the trial cell (tcell) and that the offset of the fcell occurs
before the offset of the tcell. Or, in even plainer English, that the fcell occurs during the length of the
tecell.

If the clauses are met, write the cells’ codes to the out file, separated by tabs:

44

require 'Datavyu APLrb'
begin

out_file = File.expand_path(" ™ /Desktop/DataOutput.txt')
out = File.new(out_ file,'w")

id = getColumn("id")
trial — getColumn("trial")

foot — getColumn("foot")

for idcell in id.cells
for tcell in trial.cells
for feell in foot.cells

Set up if statement that checks for cell encapsulation

if Icell.onset >— tcell.onset && lcell.offset <= tcell.offset

5. If the if clause is met, write the cells’ codes to the out file, separated by tabs.

As a refresher, cells have a series of codes: onset, offset, and ordinal by default, as well as any user-
specified codes. To access the codes in one of our temporary Ruby variables (icell, tcell, and fcell), we
use the format cellName.codeName. To access the “idnum” code in the “id” column, then, we’d request
icell.idnum.

Since the script is outputting strings, we also need to convert the onset, offset, and ordinals from the
integer format to the string format, using to_s.

require 'Datavyu_APLrb'
begin

out_file = File.expand _path("™/Desktop/DataOutput.txt")
out = File.new(out_file,'w")

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells
if fcell.onset = tcell.onset && feell.offset <= tcell.offset
Write the cells' codes to the output file, separated by tabs - the "\t"

You must include a newline indicated, "\n" so that the next cells' codes
will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" -+ tcell.onset.to_s + "\t" +

teell.offset.to_s + "\t" + tecell.trial + "\t" +
fcell.ordinal.to_s + "\t" + fcell.onset.to_s + "\t" 4

fcell.offset.to_s + "\t" + fcell.side + "\n")
End the if clause, and the for loops, as well as the script
end
end

(continues on next page)

45

continued from previous page
g

end
end

end

Video Example of Running an Export Script This video displays a user running a script to export
data in a specific way. This export script exports all of the columns of one spreadsheet into an Excel file.
Datavyu’s built-in export displays one Excel cell as one cell on the spreadsheet. This specific script repeats
all the participant information such as the id number, test date, birthdate, and sex, for all of the data making
it more useful when you import into a statistical analysis program.

Convert an OpenSHAPA Script to the Datavyu Format If you have previously written scripts
for use with OpenSHAPA, you can easily reuse them with Datavyu.

Datavyu’s Ruby API was designed to be compatible with the earlier scripting formats. To update scripts
from OpenSHAPA, you simply need to delete the OpenSHAPA API code at the beginning of the file and
replace it with the following line of code:

require 'Datavyu_APLrb'

And with that, you should be able to run your existing OpenSHAPA scripts through Datavyu.

Batch Operations on Multiple Files Writing scripts that act on multiple files is largely the same
as writing scripts that act on a single file: the interactions with columns, codes, and cells are the same.
The scripting APT includes commands that can load and save Datavyu spreadsheets. After a spreadsheet
is loaded, the script can execute commands on the spreadsheet (e.g., export data, change or add columns),
then open the next spreadsheet, execute commands, and so on.

This tutorial loads the spreadsheet files in a folder called datafiles that is located on the Desktop, accesses
the “id”, “trial” and “foot” columns, and then sets up a loop to export the data, following the process in Use
Scripts to Ezport Data from Datavyu.

1. Create the output data file that you will be exporting the spreadsheet data to:

out_ file = .expand_path("~ /Desktop/DataOutput.txt")
out = new(out_file,'w")

2. Identify the folder that contains the spreadsheets whose data you want to export, and create a list
object called filenames that lists the files in that folder:

out_ file = .expand_path("~ /Desktop/DataOutput.txt")
out — new(out_file,'w")

Locate the files in the datafiles folder on the Desktop
/+ and assign the list of file names to the filenames Ruby

i+ object.
filedir = .expand_path("~ /Desktop/datafiles/")
filenames = Dir.new(filedir).entries

3. ITterate through each file in filenames to see if it contains data and is a .opf Datavyu spreadsheet file. If
s0, load the spreadsheet data into Datavyu, and print “SUCCESSFULLY LOADED” when complete:

out_ file = .expand_path("~ /Desktop/DataOutput.txt")
out = new(out_file,'w")

(continues on next page)

46

continued from previous page
g

filedir — File.expand path("~ /Desktop/datafiles/")
filenames — Dir.new(filedir).entries

Iterate through each filename in the "filenames" list
for file in filenames
if file.include?(".opf") and file[0].chr = "'

puts "LOADING DATABASE: " -+ filedirfile
$db,proj = load _db(filedir-+file)
puts "SUCCESSFULLY LOADED"

. Get the columns you are going to export using getColumn():

out_file = File.expand path("~ /Desktop/DataOutput.txt'")
out = File.new(out_file,'w")

filedir = File.expand _path("~/Desktop/datafiles/")
filenames — Dir.new(filedir).entries

for file in filenames
if file.include?(".opf") and file[0].chr ="'

puts "LOADING DATABASE: " + filedir-+file
$db,proj — load _db(filedir+file)
puts "SUCCESSFULLY LOADED"

Retrieve "id", "trial", and "foot" columns
id = getColumn("id")

trial = getColumn("trial")
foot = getColumn("foot")

. Set up a series of for loops to iterate over each cell in the relevant columns, and then use an if to
export nested cells, following the steps in Use Scripts to Export Data from Datavyu:

out_file — File.expand path("~ /Desktop/DataOutput.txt'")
out = File.new(out_file,'w")

filedir = File.expand_path("~/Desktop/datafiles/")
filenames = Dir.new(filedir).entries

for file in filenames
if file.include?(".opf") and file[0].chr ="'

puts "LOADING DATABASE: " + filedir-+file
$db,proj = load _db(filedir-+file)
puts "SUCCESSFULLY LOADED"

id = getColumn("id")
trial = getColumn("trial")

foot = getColumn("foot")

Export Data

(continues on next page)

47

continued from previous page
g

for idcell in id.cells
for tcell in trial.cells
for feell in foot.cells
if fcell.onset = tcell.onset && feell.offset <= tcell.offset
Write the cells' codes to the output file, separated by tabs - the "\t"
You must include a newline indicated, "\n" so that the next cells' codes
i+ will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" -+ tcell.onset.to_s + "\t" +
tcell.offset.to_s + "\t" + tcell.trial + "\t" +
fcell.ordinal.to_s + "\t" + fcell.onset.to_s + "\t" +
fcell.offset.to_s + "\t" + fcell.side ~ "\n")
End the if clause, and the for loops, as well as the script
end
end
end
end

6. Close the filename for loop and if statement and print “FINISHED” when the script has finished
exporting all the spreadsheet files’ data to the output file:

require 'Datavyu APLrb'
begin

out_file — File.expand path("~ /Desktop/DataOutput.txt")
out — File.new(out_ file,'w")

filedir = File.expand path("~ /Desktop /datafiles/")
filenames = Dir.new(filedir).entries

for file in filenames
if file.include?(".opf") and file[0].chr != "'

puts "LOADING DATABASE: " + filedir+file
$db,proj = load _db(filedir+file)
puts "SUCCESSFULLY LOADED"

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

Export Data

for idcell in id.cells
for tcell in trial.cells
for fecell in foot.cells
if fcell.onset = tcell.onset && fcell.offset <— tcell.offset

Write the cells' codes to the output file, separated by tabs - the "\t"
You must include a newline indicated, "\n" so that the next cells' codes
will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" + tcell.onset.to_s + "\t" +
tcell.offset.to_s + "\t" + tecell.trial + "\t" +
fcell.ordinal.to_s + "\t" -+ fcell.onset.to_s + "\t" +

(continues on next page)

48

continued from previous page
g

fecell.offset.to_s + "\t" + fcell.side + "\n")
End the if clause, and the for loops, as well as the script
end
end
end
end

end
end

puts "FINISHED!"
end

End the script
end

Convert MacSHAPA Files to Work in Datavyu MacSHAPA users can convert their files to the
new Datavyu format using a script. The following script converts a folder of MacSHAPA files to Datavyu
files, but be sure to edit your folders’ names and locations to reflect the location of your MacSHAPA files
and Datavyu files.

require 'Datavyu_APLrb'
begin

Edit this to match the directory containing your files.
macshapa_ folder = File.expand _path("~ /Desktop/MacSHAPA /")
macshapa_files — Dir.new(macshapa_folder)

Edit this to match where you want to save the datavyu files.

datavyu_folder = File.expand path("~/Desktop/Datavyu/")

if (IFile::directory?(datavyu_folder))
Dir.mkdir(datavyu_folder) # Make this dir if it doesn't exist

end

for f in macshapa_ files.each()
Filter out files we don't want
it (f[0].chr !=".") # Filter out the hidden files like . and .. and .DSSTORE
puts "Converting " + f
Load the file and don't draw it to the screen
$db, proj = load _macshapa_ db(macshapa_folder + '/' + f, false)
puts "Saving file " 4+ f + " as Datavyu file."
save_db(datavyu_folder + '/' + f + ".opf")
end
end
end

2.2.2 Datavyu Ruby API Reference
Version 1.3.4
Classes and Class Methods

49

CTable Class
class CTable

Represent a contingency table / confusion matrix for a single code.

classmethod add(pri_wvalue, rel_value)

Increment the table value at the given combination by one. See computeKappa() for automatically
computing kappa scores.
[t][IL|L]
Parameter Type Description

pri_value String Value for primary coder.
rel value String Value for reliability coder.

Returns

None.

classmethod ef (idz)
Return the expected frequency of agreement by chance for the given index.
[¢][1[L[L|

Parameter Type Description
idx Integer Index of code (starting at zero).

classmethod efs()
Return the sum of the expected frequency of agreement by chance for all indices in table.
classmethod kappa()
Compute kappa using table values.
classmethod total()
Return the sum of all elements in table.
classmethod to_s()

Return formateed string to display the table.

RCell Class
class RCell

The Ruby container for Datavyu cells.
classmethod change code(code, val)
Changes the value of a code in a cell.
[¢][ULIL]

Parameter Type Description
arg String or Ruby column from getColumn() Name of the code that you are updating.

- wval String, Integer, etc. Value to changethecodeto.

Returns
None.

Example

The following example sets the “trial” column’s cell at position 0’s onset to 1000ms, and then
writes the change back to the spreadsheet using setColumn().

50

require 'Datavyu_APLrb'

begin
trial = getColumn("trial")
trial.cells[0].change code("onset", 1000)
setColumn ("trial", trial)

end

classmethod is_ within(outer cell)

Determines if a cell is temporally encased by the outer cell.
[¢][L]L]

Parameter Type Description

outer cell The cell that is going to be checked to see if it temporally encases the study cell.

Returns

Boolean

Example

Compare the first cell of the “trial” and “id” columns to see if the first cell of “trial” is temporally
enclosed by the first cell of “id”. If it is, print out “Yes, it is temporally enclosed”, otherwise, print
“No, it is not temporally enclosed.”

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
id = getColumn("id")
if trial.cells[0].is_ within(id.cells[0])
puts "Yes, it is temporally enclosed."
else
puts "No, it is not temporally enclosed."
end
end

classmethod contains(inner_cell)

Determines if a cell temporally encases the innter _cell.
[¢][1[L[L|

Parameter Type Description

inner_cell The cell that is going to be checked to see if it is temporally encased by the study cell.

Returns
Boolean

Example

Compare the first cell of the “trial” and “id” columns to see if the first cell of “trial” is temporally
enclosed by the first cell of “id”. If it is, print out “Yes, it is temporally encloses the cell”, otherwise,
print “No, it is does not temporally enclose the cell.”

o1

require 'Datavyu_APLrb'
begin
trial = getColumn("trial")
id = getColumn("id")
if id.cells[0].is_ within(trial.cells[0])
puts "Yes, it is temporally encloses the cell."
else
puts "No, it is does not temporally enclose the cell."
end
end

classmethod print _all(*p)
Dumps all of the codes in a cell to a string.
[¢]]1|L|L|

Parameter Type Description
p optional String The separator between codes. Defaults to tab (t)

Returns
String of the codes, starting with ordinal, onset, and offset, followed by the codes.

Example
The following example prints all of the “trial” column’s first cell’s codes using print.

require 'Datavyu_APLrb'
begin
trial = getColumn("trial")
print trial.cells[0].print _ all()
end

RColumn Class
class RColumn

The Ruby container for Datavyu columns.
classmethod make new _ cell()

Creates a new blank cell at the end of the column’s cell array.
[t][1TL]
; Tvoe Descrinti

None
Noh

Returns
Reference to the cell that was just created. Modify the cell using this reference.

Example

The following example creates a new cell at the end of the “trial” column’s cell array and assigns its
reference to the variable newcell. It then changes newcell's onset to 1000ms using change code()
and writes the change back to the spreadsheet using setColumn().

52

trial = getColumn("trial")

newcell = trial.make new cell()
newcell.change code("onset", 1000)
setColumn("trial", trial)

classmethod change code name(old _name, new_name)

Renames a code.
[¢][ULIL]
Argument Type Description
old_name String Current name of the code
new_name String New name for the code, which will replace old name

Returns
Nothing.

Example

The following example renames the “trial” column’s bad_code _name code to
awesome_ code_ name and then writes the changes back to the Datavyu spreadsheet:

require 'Datavyu_APLrb'

begin
trial = getColumn("trial")
trial.change code name("bad code name", "awesome code name")
setColumn ("trial", trial)

end

classmethod add _code(name)
Adds a code to a column.

[t]]1[L|L|
Argument Type Description
nam ring The name of th r in h lumn

Returns
Nothing.

Example
The following example adds the unit code to the “trial” column and then writes the changes back
to the spreadsheet using setColumn().

require 'Datavyu_APLrb'

begin
trial = getColumn("trial")
trial.add__code("unit")
setColumn (trial)

end

33

classmethod remove code(name)
Deletes a code from a column.
[t][ULIL|
Argument Type Description

Returns
Nothing.

Freestanding Methods

add codes to column()
add_codes_to_column(column, *codes)

Add new codes to a column.

[¢] 1L [L]

Returns

Ruby representation of the column.

Example

The following example adds “codel”; “code2”, and “code3d” to the “test” column, and writes it back to
the spreadsheet using setColumn().

require 'Datavyu APLrb'

begin
test = add _codes_to_column("test", "codel", "code2", "code3")
setColumn("test", test)

end

checkReliability ()
checkReliability (main_ col, rel_ col, match_ arg, time_tolerance, dump _file)

Compares two Datavyu columns to check for reliability errors and accuracy.
[6][L[L|

main_col String or Ruby variable from getColumn() The primary column that rel col will be compared

uuuuuuu

~ Must be

String The argument used to match the reliability cells to the primary cells

match arg a
time _tolerance Integer Amount of slack permitted, in milliseconds, between the two onset and offsets

dump_file String path or Ruby File object (optional) The full string path to dump the reliability output
to. This can be used for multi-file dumps or just to keep a log. You can also give it a Ruby File object if a
file is already started.

o4

Returns

Console and file output.

Example

The following example checks the reliability column ‘rel trial” against the primary column “trial”,
linking the two on their “trialnum” code, with a 100ms onset and offset difference tolerated.

checkReliability("trial", "rel trial", "trialnum", 100)

Example

The following example performs the same operation as the previous example, but also writes the output
to 7 /Desktop/Relcheck.txt, a text file.

checkReliability("trial", "rel trial", "trialnum", 100, "~ /Desktop/Relcheck.txt")

See also:
Check Inter-rater Reliability to Improve Data Accuracy

checkValidCodes()
checkValidCodes(column, dump_ file, *arg_code_pairs)

Checks that all coded values in Datavyu conform to a the list of valid codes for that column.
[6][1L[L|
: Tvoe Descrioti
_ column String The Datavwyucolumnthattocheck———M

dump _file String, or Ruby File object Full path of the file to dump output to. Use "' to write to the

*arg code_ pairs Key-value pairs List of code names and valid values, in the format “code name”,

Returns

Console and/or file input.

Example

The following example checks the validity of the codes for the “trial” Datavyu column:

Check_valid_codes(”trial”, HH’ Hhandﬂ’ [”1”"’I‘”,”b”,”ll”], Hturnll’ [Hl!l’llrll]’
”unit”, [”1”,”2”,”3”])

See also:
Check for Coding Errors

35

combine columns()
combine _columns(name, *columnNames)
Combines two column together, creating a new column. create mutually exclusive() combines the
two source columns cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns’ cells as well as a new cell for each
overlap.

[l [T

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called “test” from two existing columns, “coll” and “col2”, and
then writes the changes back to the spreadsheet using setColumny().

require 'Datavyu APLrb'

begin
test — combine columns("test", "coll", "col2")
setColumn("test", test)

end

computeKappa()
computeKappa(pri_ col, rel_col, *codes)

Computes Cohen’s kappa for a primary and reliability column. Cells between the two columns are
matched by their onset time. Computes a contingency table and kappa score for each specified code.

[¢][LTIL]

Returns

Hashes (associative arrays) for kappa values and CTable, in that order. Keys are names of the codes.
Values are Numeric, and :class” Ctable™, respectively.

createColumn()
createColumn(name, *codes)

Creates a new blank column with the specified name and codes.
[6]1[LIL|
Pa Tvoe D .

codes comma separated Strings Codes that the new column will contain.

56

Note: createColumn() creates the onset, offset, and ordinal codes by default. You do not need to
specify them in the codes.

Returns

Ruby object representation of the new column in Datavyu.

Example

The following example creates a new Datavyu column called “trial” with the codes “trialnum” and
“unit”, and assigns them to an RColumn object called trial. It then adds a new cell to trial using
make_new _ cell() and writes the changes back to the Datavyu spreadsheet using setColumn().

require 'Datavyu_APLrb'

begin
trial = createColumn("trial", "trialnum", "unit")
trial.make new cell()
setColumn(trial)

end

createmutually exclusive()
create_mutually exclusive(name, collname, col2name)
Combines two column together, creating a new column.:func:create mutually ezclusive combines the
two source columns cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns’ cells as well as a new cell for each
overlap.

[¢] 1L [T

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called “test” from two existing columns, “coll” and “col2”, and
then writes the changes back to the spreadsheet using setColumny().

require 'Datavyu_APLrb'

begin
test = create__mutually _exclusive("test", "coll", "col2")
setColumn("test", test)

end

37

deleteCell()
deleteCell(cell)

Removes the specified cell from its column and propagates the changes to the spreadsheet.
[6][1L[L|

P T D ..

Returns

Undefined.

Example

Removes cells from the “trial” column with “condition” coded as “a”.

First get the column from the database
trial = getVariable("trial")

Now loop through all of the cells in that column, checking if
they are coded as a left hand.
for trial _cell in trial.cells

Is hand coded as "1" for this cell?

if trial cell.condition —— 'a'

deleteCell(cell)

end

end

deleteVariable()
deleteVariable(column)

Deletes a column from the spreadsheet.

Alias(es): delete column

[¢] 1L [T

Returns

Nothing.

Example

The following example removes column ‘trials’ from the spreadsheet.

require 'Datavyu APLrb'
begin

deleteVariable('trials')
end

98

getCellFromTime()
getCellFromTime(col, time)

Identifies the cell that occurs at a given point in time for the specified column, and returns it.
[6][1L[L|

col String or RColumn object Name or Ruby representation of the column that you are looking for a cell

L
VVILTTITT

A

Returns

Returns the Ruby representation of the cell at the specified point in time. If there is no cell at that
point in time, Ruby does not return anything.

Example

The following example identifies the cell that occurs at 100ms in the “trial” column, and assigns it to
a RCell object. It then prints out the cell’s ordinal, onset, and offset codes for easy location.

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
cell = getCellFromTime(trial, 100)

Get the ordinal, onset, offset

values from the cell, and assign them to
string variables, so we can print them out
ordinal — cell.ordinal.to_s

onset = cell.onset.to_s

offset = cell.offset.to_s

Print out ordinal, onset, and offset, and their values

puts "ordinal: //{ordinal }"
puts "onset: //{onset }ms"
puts "offset: //{offset }ms"
end
getColumn()
getColumn(name)

Retrieves a variable from the Datavyu spreadsheet and assigns it to a Ruby object using print _debug().
[6][1|L[L|

Returns

A Ruby object representation of the Datavyu column.

Example

39

The following example retrieves the Datavyu column “trial” and assigns it to a Ruby variable called
trial.

require 'Datavyu APLrb'
begin

trial = getColumn("trial")
end

getColumnList()
getColumnList()

Outputs a list of all the columns in the current spreadsheet.
[6][L[L|
P Tvoe D -

V]
INOITTT

Returns

List of columns.

Example

The following example assigns the list of columns to a Ruby object called, columnList and prints it
out using puts.

require 'Datavyu APLrb'

begin
columnList = getColumnList/()
puts columnList

end

load db()

load _db(filename)
Loads a spreadsheet’s data directly from the file.
[6][L[L|

—
—Pmeﬁgype@%miﬁl Serine Tho Lol E ol 5 ™

Returns

e $db: the spreadsheet of the opened project
e $pj: project data of the opened project

Example

The following example loads the test.opf spreadsheet located on the Desktop.

60

require 'Datavyu APLrb'
begin

$db,$pj — load _db("~/Desktop /test.opf")
end

load macshapa _db()

load macshapa_db(filename, write_to_ gui, *ignore_wvars)

Opens an old, closed MacSHAPA spreadsheet file and loads it into the current open spreadsheet.

Warning: load macshapa db() only reads in matrix and string columns. It does not yet support
predicates, and queries are not imported. In order to be compatible with Datavyu, all times will
be converted to milliseconds.

[e] L

write_to_gui Boolean If true, the MacSHAPA file is read into the spreadsheet that is currently open in

Returns

$db, the spreadsheet data and $pj, the project data for that file.

Example

The following example loads the test.opf MacSHAPA file and into ruby variables called $db and $pj.

require 'Datavyu APLrb'
begin

$db,5pj — load _db("~ /Desktop/test.opf",)
end

Example

In this example, the test.opf MacSHAPA file is read into the spreadsheet that is currently open in
Datavyu’s GUL

require 'Datavyu APLrb'
begin

$db, $pj = load _db("™ /Desktop/test.opf",)
end

makeDurationBlockRel()

makeDurationBlockRel(relname, var _to_copy, binding, block _dur, skip_blocks)

Makes a duration-based reliability column. This creates two columns, one containing a cell with a
number for that block, and another blank column for the free coding within the block.

[¢][1T L]

61

var_to_copy RColumn object Name of the column which you are copying, i.e.the existing column that

skip _blocks Integer Determlnes the amount of spacethat shouldbe Ieft between each coding block.
skip _blocks is an Integer Each sk|pped block is the Iength speafled by block dur. If block dur is 10

Returns

Nothing. Columns are automatically written to the spreadsheet.

Example

The following example creates a duration-based reliability column from the “step” column.

require 'Datavyu APLrb'

makeReliability ()
makeReliability (relname, column_to_ copy, multiple_to keep, *codes to keep)

Creates a reliability column that is a copy of another Datavyu column in the Database.
makeReliability() can copy the cells (or a subsection of the cells) and retain codes from the origin
column if desired.

[¢][LTIL]

relname String or Ruby column from getColumn() the name of the new reI|ab|I|ty column you will

column to copy Strlng The name of the column that we want to create a rellablllty cqumn from (| e.
the existing coded column).

multiple to keep Integer (optlonal) Number of cells to sklp a value of 2 mcIudes every other cell in

Returns

A Ruby object representation of the reliability column within Datavyu.

Example

The following example creates the reliability column ‘“rel trial” from the primary column “trial”,
copying every second cell, and retaining the “onset”, “trialnum” and “unit” codes, and then writes
the new ‘“rel trial” column back to the spreadsheet.

require 'Datavyu APLrb'

begin
rel trial = makeReliability("rel trial", "trial", 2, "onset", "trialnum", "unit'")
setVariable("rel trial", rel trial)

end

62

See also:

o Check Inter-rater Reliability to Improve Data Accuracy

printAllNested()
printAllNested()

[t] 1L [T

Returns

[stuff it returns]

Example

[example]

printCellCodes()
printCellCodes(cell)

Prints out the values for every code in a specified cell.
[6][1[L[L]

—
—Wpe%@mminlggn bioct Thoe ol v — _

Returns

An object listing all of the codes in a given cell.

Example

The following example uses puts to print out the codes for the first cell in the “trial” column, accessed
using printCellCodes().

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
cell = trial.cell[0]

puts printCellCodes(cell)
end

print_codes()
print_codes(cell, file, codes)

Writes a cell’s codes to a file, separated by tab (\t).
[e][1TIL]

cription
—Parameter—'l'—ype—Dec_ serption - -

63

Returns

Nothing. Writes results to the specified file.

Example

The following example uses print_codes() to write the coded values for the cells in the “trial” variable
to a file called “trial codes.txt”, located on the Desktop.

require 'Datavyu APLrb'

begin
Defines the location of the file that we're going to be outputting
+ the column data to - the file name is baby codes.txt
and is located on the Desktop.
out_file = File.expand _path(" ™~ /Desktop/baby _codes.txt")

Creates the file, and assigns write permissions 'w'
out — File.new(out_ file,'w")

Retrieves the "BabyLocation" column from the spreadsheet
baby = getColumn("BabyLocation")

Define which codes we want to print out
codes_to_print — ["ordinal", "onset", "offset", "arg01"]

Iterate through every cell in the BabyLocation column to

print its coded values.

for cell in baby.cells

Write the ordinal, onset, offset, and code0O1 codes to the baby codes.txt file,
which is accessed by the variable called out,

print _codes(cell, out, codes to print)

Write a newline to the file so that the values for each cell
will be in their own row
out.write("\n")
end
end

save db()

save_db(filename)

Saves the current $db and $pj variables to a file. If the filename ends with .csv, save db() saves the
data as a .csv file. Otherwise, it saves it as .opf.

[¢][L[L|

Parameter Tvpe ne_srr;r\finn
ey pe—+J HPHOH

al e EARONINAE g ST | -

Returns

64

Nothing.

Example

The following example saves the current spreadsheet open in the GUI to a file called test.opf that is
located on the Desktop.

require 'Datavyu APLrb'
begin
save_db("~ /Desktop/test.opf")
end
setColumn()

setColumn (name, var)
setColumn() writes columns to the spreadsheet: for columns that already exist, setColumn() replaces
the data in the spreadsheet with the version updated using the script. For instance, if you were to
retrieve the “trial” column from a spreadsheet and then make some changes, you would use setColumn()
to write those changes to the spreadsheet, replacing the old data with your new data.

If the column does not already exist in the spreadsheet (for instance, if you create a new column using
makeNewColumn()), setColumn() will instead create a new column in the spreadsheet.
[¢][L[L|
P Tvoe Descrinti

name String (option

T
column RColumn object (required) Ruby container of the column that you are inserting into the
spreadsheet (mnrlifind output of Prpnprpw(‘n]nmn() or gpf(‘nlnmno)

Important: You must specify a value for the column parameter. If you are also passing a value for
the name parameter, the order of arguments must be name followed by column.

Returns

None

Example

The following example retrieves the Datavyu column “trial” and assigns it to a Ruby variable called
trial. After some modifications to the trial object, it writes those changes back to the spreadsheet
using setColumn().

require 'Datavyu APLrb'

begin
trial = getColumn("trial")
<some modifications to trial >
setColumn("trial", trial)

end

smoothColumn()

65

smoothColumn(colname, tol=33)

Tweaks cell onsets so that there is a maximum of tol milliseconds between each cell. If two cells are
less than tol apart, it moves on to the next pair of cells; if there is a larger gap than tol, the second
cell’s onset is set to the first cell’s offset.

[t][1|L|L|

tol Integer The toleranc
defarlt

acrauatt;

e you are willing to accep
+
T

Returns

Nothing. In addition, smoothColumn() automatically writes its changes back to the spreadsheet, so
you do not need to write the changes using setColumn().

Example

The following example checks the “trial” column’s cells to ensure that a maximum of 50ms between a
cell’s offset and the subsequent cell’s onset.

require 'Datavyu APLrb'
begin

smoothColumn("trial", 50)
end

transfer columns
transfer columns(db1, db2, remove, *varnames)

Transfers columns between spreadsheets. If dbl or db2 is set to the empty string ‘°, then that
spreadsheet is spreadsheet open in the GUI.

Thus, if you want to transfer a column into the GUI, set db2 to *, and specify the origin spreadsheet
file as dbl. If you want to transfer a column from the GUI into a file, set dbl to ‘’, and set db2 to
that file’s path.

Warning: Setting remove to TRUE will DELETE THE COLUMNS YOU ARE
TRANSFERRING FROM DBI1.

[¢][1TJL]

dbl String The full path to save the first Datavyu file. Set to ™' to use the spreadsheet that's currently
db2 String The full path to save the second Bat'a‘\'/yu file. Set to " to use the spreadsheet that's
currently open-
remove Boolean If TRUE, Datavyu will delete the columns from dbl as they are copied to db2. FALSE

- - - teaves thecolumns-intact: -
varnames list of strings List of the names of the columns that you wish to copy from db1 to dbl. You

- mustspecifyatleastonecolumnpame—

Returns

Nothing. Saves files in place or modifies the GUI.

66

Example

The following example transfers the column “idchange” from test.opf to the GUI and leaves test.opf
intact and unmodified.

Transfer column(s) from one opf to another.

Set sourceFile and destinationFile to the full path;
Leave blank to indicate currently open file.

This will work for as many columns as you like.

require 'Datavyu_APLrb'
class RVariable

Define a way to construct a new cell by cloning a given cell.
Not for general purpose use as vocabulary can become corrupt if used improperly
def make new cell2(cell)
¢ — RCell.new
c.onset = cell.onset
c.offset = cell.offset
c.ordinal — cell.ordinal
c.set_args(cell.argvals,@arglist)
c.parent = @name
@cells << ¢
return ¢
end
end

def transferMyVariable(db1,db2,delete,*varnames)
If varnames was specified as a hash, flatten it to an array
varnames.flatten!

$debug—true

Display args when debugging
if $debug
puts 11:11*20
puts "/ { __method _} called with following args:"
puts dbl,db2,delete,varnames
puts "="%20
end

Handle degenerate case of same source and destination

if db1==db2
puts "Warning: source and destination are identical. No changes made."
return nil

end

Set the source database, loading from file if necessary.
Raises file not found error and returns nil if source database does not exist.
dblpath = ""
begin
if db1!-""

(continues on next page)

67

continued from previous page
g

dblpath — File.expand path(db1)
if IFile.readable?(dblpath)
raise "Error! File not readable : //{db1}"
end
puts "Loading source database from file : #/{dblpath}" if $debug
from db,from proj — loadDB(dblpath)
else
from _db,from proj = $db,$proj
end
rescue StandardError => e
puts e.message
puts e.backtrace
return nil
end

Set the destination database, loading from file if necessary.
Raises file not found error and returns nil if destination database does not exist.

db2path = ""
begin
if db2!=""
db2path — File.expand path(db2)
it [File.writable?(db2path)
raise "Error! File not writable : #{db2}"
end
puts "Loading destination database from file : #{db2path}" if $debug
to_db,to_proj = loadDB(db2path)
#$db,$proj — loadDB(db2path)
else
to_db,to_proj = $db,5proj
end

rescue StandardError => e
puts e.message
puts e.backtrace
return nil

end

Set working database to source database to prepare for reading
$db,%pj = from _db,from_proj

Construct a hash to store columns and cells we are transferring
puts "Fetching columns..." if $debug
begin
col _map = Hash.new
cell_map — Hash.new
for col in varnames
¢ = getColumn(col.to_s)

if c.nil?
puts "Warning: column #{c} not found! Skipping..."
next

end

col _map|col] = ¢
cell _map][col] = c.cells

(continues on next page)

68

continued from previous page
g

puts "Read column : #{col.to_s}" if $debug
end
end

Set working database to destination database to prepare for writing
$db,$pj — to_db,to_ proj

Go through the hashmaps and reconstruct the columns

begin
for key in col _map.keys
col — col map|key]|
cells = cell map[key]|
arglist — col.arglist
Construct a new variable and add all associated cells
newvar — createVariable(key.to _s,arglist)
for ¢ in cells
newvar.make new cell2(c)
end
setVariable(key.to _s,newvar)
if $debug
puts "Wrote column : //{key.to_s} with /{newvar.cells.length} cells"
end
end
rescue StandardError => e
puts "Failed trying to write column # {col}"
puts e.message
puts e.backtrace
return nil
end

Finally, save the database to file if applicable
saveDB(db2path) if db2path!—""
end

begin
$debug—false
sourceFile="/Users/datavyutester /Desktop/FileNamel.opt"
destinationFile="/Users/datavyutester/Desktop /FileName2.opf"
columnsToTransfer = ["reltrial"|
transferMy Variable(sourceFile, destinationFile, false, columnsToTransfer)
end

See also:
The Glossary

Version 1.3.6
Classes and Class Methods

CTable Class
class CTable

69

Represent a contingency table / confusion matrix for a single code.
classmethod add(pri_wvalue, rel_value)
Increment the table value at the given combination by one. See compute kappa() for
automatically computing kappa scores.
[¢][1[L[L|
Parameter Type Description

pri_value String Value for primary coder,
rel value String Value for reliability coder.

Returns
None.

classmethod ef (idz)
Return the expected frequency of agreement by chance for the given index.
[¢]]1[L[L|

Parameter Type Description
idx Integer Index of code (starting at zero).

classmethod efs()
Return the sum of the expected frequency of agreement by chance for all indices in table.
classmethod kappa()
Compute kappa using table values.
classmethod total()
Return the sum of all elements in table.
classmethod to_s()

Return formateed string to display the table.

RCell Class
class RCell

The Ruby container for Datavyu cells.
classmethod change code(code, val)
Changes the value of a code in a cell.
[e][IL L
Parameter Type Description

arg String or Ruby column from get column() Name of the code that you are updating.
1 String, In r . Val hange th

Returns
None.

Example

The following example sets the “trial” column’s cell at position 0’s onset to 1000ms and then
writes the change back to the spreadsheet using set column().

70

require 'Datavyu_APLrb'

begin
trial = getColumn("trial")
trial.cells[0].change code("onset", 1000)
setColumn ("trial", trial)

end

classmethod is_ within(outer cell)

Determines if a cell is temporally encased by the outer cell.
[¢][L]L]

Parameter Type Description

outer cell The cell that is going to be checked to see if it temporally encases the study cell.

Returns

Boolean

Example

Compare the first cell of the “trial” and “id” columns to see if the first cell of “trial” is temporally
enclosed by the first cell of “id”. If it is, print out “Yes, it is temporally enclosed”, otherwise, print
“No, it is not temporally enclosed.”

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
id = getColumn("id")
if trial.cells[0].is_ within(id.cells[0])
puts "Yes, it is temporally enclosed."
else
puts "No, it is not temporally enclosed."
end
end

classmethod contains(inner_cell)

Determines if a cell temporally encases the inner cell.
[¢][1[L[L|

Parameter Type Description

inner_cell The cell that is going to be checked to see if it is temporally encased by the study cell.

Returns
Boolean

Example

Compare the first cell of the “trial” and “id” columns to see if the first cell of “trial” is temporally
enclosed by the first cell of “id”. If it is, print out “Yes, it is temporally encloses the cell”, otherwise,
print “No, it is does not temporally enclose the cell.”

71

require 'Datavyu_APLrb'
begin
trial = getColumn("trial")
id = getColumn("id")
if id.cells[0].is_ within(trial.cells[0])
puts "Yes, it is temporally encloses the cell."
else
puts "No, it is does not temporally enclose the cell."
end
end

classmethod print _all(*p)
Dumps all of the codes in a cell to a string.
[¢]]1|L|L|

Parameter Type Description
p optional String The separator between codes. Defaults to tab (t)

Returns
String of the codes, starting with ordinal, onset, and offset, followed by the codes.

Example
The following example prints all of the “trial” column’s first cell’s codes using print.

require 'Datavyu_APLrb'
begin
trial = getColumn("trial")
print trial.cells[0].print _ all()
end

RColumn Class
class RColumn

The Ruby container for Datavyu columns.
classmethod make new _ cell()

Creates a new blank cell at the end of the column’s cell array.
[t][1TL]
; Tvoe Descrinti

None
Noh

Returns
Reference to the cell that was just created. Modify the cell using this reference.

Example

The following example creates a new cell at the end of the “trial” column’s cell array and assigns its
reference to the variable newcell. It then changes newcell's onset to 1000ms using change code()
and writes the change back to the spreadsheet using set column().

72

trial = get column("trial")

newcell = trial.make new cell()
newcell.change code("onset", 1000)
set _column("trial", trial)

classmethod change code name(old _name, new_name)

Renames a code.
[¢][ULIL]
Argument Type Description
old_name String Current name of the code
new_name String New name for the code, which will replace old name

Returns
Nothing.

Example

The following example renames the “trial” column’s bad_code _name code to
awesome_ code_ name and then writes the changes back to the Datavyu spreadsheet:

require 'Datavyu_APLrb'

begin
trial = get column("trial")
trial.change code name("bad code name", "awesome code name")
set_ column("trial", trial)

end

classmethod add _code(name)
Adds a code to a column.

[t]]1[L|L|
Argument Type Description
nam ring The name of th r in h lumn

Returns
Nothing.

Example
The following example adds the unit code to the “trial” column and then writes the changes back
to the spreadsheet using set_column().

require 'Datavyu_APLrb'

begin
trial = get column("trial")
trial.add _code("unit")
set_column(trial)

end

73

classmethod remove code(name)

Deletes a code from a column.
[¢][L|L[L|
Argument Type Description

Returns

Nothing.

Example

The following example removes the unit code from the “trial” column and then writes the changes
back to the spreadsheet using set column().

require 'Datavyu_APLrb'

begin
trial = get column("trial")
trial.remove _code("unit")
set_ column(trial)

end

Freestanding Methods

add codes to column()
add_codes_to_column(column, *codes)

Alias(es): addCodesToColumn, add_ args_to_wvar

Add new codes to a column.

[¢][LITIL]

Returns

Ruby representation of the column.

Example

The following example adds “condition _abc”, “response xyz’, and “score_123” to the “test” column,
and writes it back to the spreadsheet using set column().

require 'Datavyu APLrb'

begin
test = add_codes_to_column("test", "condition abc", "response xyz", "score 123")
setColumn(test)

end

74

check datavyu version()
check _datavyu_ version(min Version, mazVersion)

Checks whether the current version of Datavyu meets the minimum and maximum requirements
specified in the parameters.

Requires Datavyu 1.3.5 or greater.
[6][L[L|

Returns

True if the current Datavyu version meets the specified requirements; false otherwise.

Example

Raise an error message unless the script is run on Datavyu version 1.3.5 or greater.

raise "This script will not work on the current version of Datavyu" if not check datavyu version(
~'v:1.3.5")

check reliability()
check reliability (main_ col, rel_ col, match_arg, time_tolerance, dump_ file)

Compares two Datavyu columns to check for reliability errors and accuracy.
[6][1[L[L]

main_col String or Ruby variable from getColumn() The primary column that rel col will be compared

st
HASt

match arg Strmg The argument used to match the rel|ab|l|ty cells to the pr|mary ceIIs Must Bea

time _tolerance Integer Amount of slack permitted, in milliseconds, between the two onset and offsets

dump_file String path or Ruby File object (optional) ~The full string path to dump the reliability output
to. This can be used for multi-file dumps or just to keep a log. You can also give it a Ruby File object if a

Returns

Console and file output.

Example

The following example checks the reliability column “rel trial” against the primary column “trial”,
linking the two on their “trialnum” code, with a 100ms onset and offset difference tolerated.

check reliability("trial", "rel trial", "trialnum", 100)

Example

75

The following example performs the same operation as the previous example, but also writes the output
to 7 /Desktop/Relcheck.txt, a text file.

check reliability("trial", "rel trial", "trialnum", 100, "~ /Desktop/Relcheck.txt")

See also:
Check Inter-rater Reliability to Improve Data Accuracy

check valid codes()
check valid codes(column, dump_ file, *arg_code_ pairs)

Alias(es): checkValidCodes
Checks that all coded values in Datavyu conform to a the list of valid codes for that column.
[6][1[L[L]
. Tvoe Descrioti

dump_file String, or Ruby File object Full path of the file to dump output to. Use "' to write to the

*arg code pairs Key-value pairs List of code names and valid values, in the format “code name”,

Returns

Nothing. Generated messages are output to console and/or file.

Example

The following example checks the validity of the codes for the “trial” Datavyu column:

check wvalid _codes("trial", "", "hand", ["1","r","b","n"], "turn", ["1","r"],
”unit”, [lllll,HQH,HSH])

See also:
Check for Coding Errors

check valid codes2()
check valid codes2(data, dump _file, *arg code_ pairs)

Advanced version of check walid_ codes(), available in Datavyu version 1.3.5 and higher.

Can check codes using patterns and can operate over multiple columns. Backwards-compatible with
check_wvalid_codes() so this function should be able to replace calls to check wvalid_codes().

(]2 [L]

data String, RVariable, or Hash When this parameter is a String or a column object from getVariable(),
the function operates on codes within this column. If the parameter is a Hash (associative array), the
function ignores the arg code pairs arguments and uses data from this Hash. The Hash must be
structured as a nested mapping from columns (either as Strings or RVariables) to Hashes. These nested
hashes must be mappings from code names (as Strings) to valid code values (as either lists (Arrays) or

patterns {Pp:royn\\
t=) P77

dump _file Strlng or Ruby File obJect Path of the file to dump output to. Use empty Strlng (i,e. ") to

76

Returns

Nothing. Generated messages are output to console and/or file.

Example

The following example checks three columns for valid code values. Before the call to the function, a
nested mapping is created for each column. The inner map is a mapping from the names of codes to
their valid values.

#4 Params
date_format = /\A\d{2}\/\d{2}\/\d{4}\Z/ # dates must be formatted: ## /#

Ak ki

Associative mapping from column names to mappings from code names to valid values

map — {
d'=>{
'testdate' => date_format,

"idnum' => /\A\d{3}\Z/, # id number must be exactly 3 digits
'gender' => ['m', '{", '], # gender can be one of 3 values
'birthdate' => date_format

b

'condition' => {
'cond _ab' => ['a', 'b"| # condition can be either 'a' or 'b’

}

"trial' => {
"trialnum' => /\A\d+\Z/, # trial number must be one or more digits
result _xyz' => ['x', 'y', '2'| # result must be one of 3 values

}
}

#4+ Body
check _valid_ codes2(map, '~ /Desktop/check.txt')

See also:
Check for Coding Errors

combine columns()
combine _columns(name, *columnNames)
Combines two columns together, creating a new column. create mutually exclusive() combines the

two source columns’ cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns’ cells as well as a new cell for each

overlap.
[¢][1|L|L|
Parameter Type npcrripfinn
name String The name of the new column vou wish to create
columnNames |ist of cfringc The names of the source column that will be combined
Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

77

The following example creates a column called “test” from two existing columns, “coll” and “col2”, and
then writes the changes back to the spreadsheet using set column().

require 'Datavyu APLrb'

begin
test — combine columns("test", "coll", "col2")
setColumn("test", test)

end

compute kappa()
compute kappa(pri_ col, rel_col, *codes)
Computes Cohen’s kappa for a primary and reliability column. Cells between the two columns are
matched by their onset time. Computes a contingency table and kappa score for each specified code.

[l [L]

Parameter Typn Description

Name (0 olumn obje

Returns

Hashes (associative arrays) for kappa values and CTable, in that order. Keys are names of the codes.
Values are Numeric, and :class” Ctable™, respectively.

createmutually exclusive()
create_mutually exclusive(name, collname, col2name)
Combines two columns together, creating a new column. create mutually exclusive() combines the
two source columns’ cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns’ cells as well as a new cell for each
overlap.

[¢][1[L L]

Parameter Typn nncrripfinn

col2name ering The name of the second source column-to combine.

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called “test” from two existing columns, “coll” and “col2”, and
then writes the changes back to the spreadsheet using setColumny().

require 'Datavyu APLrb'

begin
test = create _mutually exclusive("test", "coll", "col2")
setColumn("test", test)

end

78

delete cell()

delete cell(cell)
Removes the specified cell from its column and propagates the changes to the spreadsheet.
[6][L[L|

P T D ..

Returns
Undefined.

Example

Removes cells from the “trial” column with “condition” coded as “a”.

First get the column from the database
trial = get column("trial")

Now loop through all of the cells in that column, checking if
% they are coded as a left hand.
for trial cell in trial.cells

Is hand coded as "1" for this cell?

if trial cell.condition —— 'a'
delete cell(cell)
end
end

delete variable()
delete variable(column)

Deletes a column from the spreadsheet.
Alias(es): delete column
[¢]]1/L|L|

Returns

Nothing.

Example

The following example removes column ‘trials’ from the spreadsheet.

require 'Datavyu APLrb'
begin

delete variable('trials')
end

79

get cell from time()
get cell from time(col, time)

Identifies the cell that occurs at a given point in time for the specified column, and returns it.
[6][1L[L|

col String or RColumn object Name or Ruby representation of the column that you are looking for a cell

L
VVILTTITT

A

Returns

Returns the Ruby representation of the cell at the specified point in time. If there is no cell at that
point in time, Ruby does not return anything.

Example

The following example identifies the cell that occurs at 100ms in the “trial” column, and assigns it to
a RCell object. It then prints out the cell’s ordinal, onset, and offset codes for easy location.

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
cell = get cell from time(trial, 100)

Get the ordinal, onset, offset

values from the cell, and assign them to
string variables, so we can print them out
ordinal — cell.ordinal.to_s

onset = cell.onset.to_s

offset = cell.offset.to_s

Print out ordinal, onset, and offset, and their values

puts "ordinal: //{ordinal }"

puts "onset: //{onset }ms"

puts "offset: //{offset }ms"
end

get column()
get _column(name)

Retrieves a variable from the Datavyu spreadsheet and assigns it to a Ruby object using print _debug().
[6][1|L[L|

Returns

A Ruby object representation of the Datavyu column.

Example

80

The following example retrieves the Datavyu column “trial” and assigns it to a Ruby variable called
trial.

require 'Datavyu APLrb'
begin

trial = get column("trial")
end

get column _list()
get column _list()

Outputs a list of all the columns in the current spreadsheet.
[6][L[L|
P Tvoe D -

V]
INOITTT

Returns

List of columns.

Example

The following example assigns the list of columns to a Ruby object called, columnList and prints it
out using puts.

require 'Datavyu APLrb'

begin
columnList = get column_ list()
puts columnList

end

get datavyu version()
get _datavyu_version()
Return the current Datavyu version as a String (e.g. ‘v:1.3.5")

Requires Datavyu 1.3.5 or greater.

Returns

String.

load db()

load _db(filename)
Loads a spreadsheet’s data directly from the file.
[6][1[L[L]

—
—Wﬁwiﬁl Strine Tho il ol b ol 5 ™

Returns

81

e $db: the spreadsheet of the opened project
e $pj: project data of the opened project

Example

The following example loads the test.opf spreadsheet located on the Desktop.

require 'Datavyu APLrb'
begin

$db,5p] — load _db("~ /Desktop/test.opf")
end

load macshapa _db()
load macshapa_db(filename, write_to_ gui, *ignore_wvars)

Opens an old, closed MacSHAPA spreadsheet file and loads it into the current open spreadsheet.

Warning: load macshapa_db() only reads in matrix and string columns. It does not yet support
predicates, and queries are not imported. In order to be compatible with Datavyu, all times will
be converted to milliseconds.

[¢][1TL|
. P Tvoe Descrioti -
write_to_gui Boolean If true, the MacSHAPA file is read into the spreadsheet that is currently open in

Returns

$db, the spreadsheet data and $pj, the project data for that file.

Example

The following example loads the test.opf MacSHAPA file and into ruby variables called $db and $pj.

require 'Datavyu APLrb'
begin
$db,5p] = load _db("~ /Desktop/test.opt",)
end
Example

In this example, the test.opf MacSHAPA file is read into the spreadsheet that is currently open in
Datavyu’s GUL

require 'Datavyu APLrb'
begin

$db, $pj — load _db("~ /Desktop /test.opf",)
end

82

make duration block rel()
make duratlon block rel(relname var_to_ copy, binding, block _dur, skip_blocks)

Makes a duration-based reliability column. This creates two columns, one containing a cell with a
number for that block, and another blank column for the free coding within the block.

[t]1|L|L|

var_to_copy RColumn object Name of the column which you are copying, i.e. the existing column that

block dur Integer Inngth the blocks should be (in .cprnnrlc)

skip_blocks Integer Determines the amount of space that should be left between each coding block.
skip _blocks is an Integer Each sk|pped block is the Iength speC|f|ed by block dur. If block dur is 10

Returns

Nothing. Columns are automatically written to the spreadsheet.

Example

The following example creates a duration-based reliability column from the “step” column.

require 'Datavyu APLrb'

make reliability()
make reliability (relname, column_to_copy, multiple _to keep, *codes to_keep)
Creates a reliability column that is a copy of another Datavyu column in the Database.
make reliability() can copy the cells (or a subsection of the cells) and retain codes from the origin
column if desired.

[¢][LILIL]

relname String or Ruby column from getColumn() the name of the new reI|ab|I|ty column you will

column to copy Strmg The name of the column that we want to create a rel|ab|l|ty cqumn from (| e.
the existing coded column).
multiple to keep Integer (optlonal) Number of cells to skip' a value of 2 includes every other cell in

Returns

A Ruby object representation of the reliability column within Datavyu.

Example

The following example creates the reliability column ‘rel trial” from the primary column “trial”,
copying every second cell, and retaining the “onset”, “trialnum” and “unit” codes, and then writes
the new “rel trial” column back to the spreadsheet.

83

require 'Datavyu APLrb'

begin
rel trial — make reliability("rel trial", "trial", 2, "onset", "trialnum", "unit")
setVariable("rel trial", rel trial)

end

See also:

o Check Inter-rater Reliability to Improve Data Accuracy

merge columns()
merge columns(*column_ names)

Combines multiple columns together and returns a new column containing all the codes from the given
columns (plus an ordinal number code for each column).

Behaves similar to create mutually _exclusive, however, identical results are not guaranteed.

[6][L[L|
Parameter Type Description

columns List Columns to combine. List can contain either the names of the columns as
rin r the RColumn obj representing th lumn.

Returns
New RColumn object on success. Nil value on failed merge.

Example

The following example creates a column called “merged” from three source columns:
gesture_mom, gesture child, gesture dad.

merged column — merge columns('merged’, 'gesture mom', 'gesture child', 'gesture
—dad")
set _column(merged column) # save to spreadsheet.

new column()
new _column(name, *codes)

Creates a new blank column with the specified name and codes.
[6]1[LIL|

Note: new column() creates the onset, offset, and ordinal codes by default. You do not need to
specify them in the codes.

Returns

Ruby object representation of the new column in Datavyu.

84

Example

The following example creates a new Datavyu column called “trial” with the codes “trialnum” and
“unit”, and assigns them to an RColumn object called trial. It then adds a new cell to trial using
new _cell() and writes the changes back to the Datavyu spreadsheet using set column().

require 'Datavyu APLrb'

begin
trial = new_ column('trial’, "trialnum’, "unit")
trial.new _cell()
set_ column(trial)

end

print_cell codes()
print_cell codes(cell)
Prints out the values for every code in a specified cell.
[6][1[L[L]
"
1L RCellobi : aIrametelll lylpe Description . .

Returns

An object listing all of the codes in a given cell.

Example

The following example uses puts to print out the codes for the first cell in the “trial” column, accessed
using print_cell codes().

require 'Datavyu APLrb'
begin
trial = getColumn("trial")
cell = trial.cell[0]

puts print_cell codes(cell)
end

print_codes()
print__codes(cell, file, codes)

Writes a cell’s codes to a file, separated by tab (\t).
[¢] LT

scription
—Barameter—'ﬁyp&De_ scription

Returns

Nothing. Writes results to the specified file.

85

Example

The following example uses print_codes() to write the coded values for the cells in the “trial” variable
to a file called “trial _codes.txt”, located on the computer Desktop.

require 'Datavyu APLrb'

begin
Defines the location of the file that we're going to be outputting
the column data to - the file name is baby codes.txt
and is located on the Desktop.
out_file = File.expand _path(" ™~ /Desktop/baby _codes.txt")

Creates the file, and assigns write permissions 'w'
out = File.new(out_ file,'w")

Retrieves the "BabyLocation" column from the spreadsheet
baby = getColumn("BabyLocation")

Define which codes we want to print out
codes_to_print — ["ordinal", "onset", "offset", "arg01"]

Iterate through every cell in the BabyLocation column to

print its coded values.

for cell in baby.cells

Write the ordinal, onset, offset, and code01 codes to the baby codes.txt file,
which is accessed by the variable called out,

print _codes(cell, out, codes to_print)

Write a newline to the file so that the values for each cell
will be in their own row
out.write("\n")
end
end

save db()
save_db(filename)

Saves the current $db and $pj variables to a file. If the filename ends with .csv, save db() saves the
data as a .csv file. Otherwise, it saves it as .opf.

[¢][L[L|

Parameter Tvpe Descrintion
a1y P ESCHPHOR

Returns

Nothing.

Example

The following example saves the current spreadsheet open in the GUI to a file called test.opf that is
located on the Desktop.

86

require 'Datavyu APLrb'
begin

save_db("~ /Desktop/test.opf")
end

set column()
set_column(name, var)

set _column() writes columns to the spreadsheet. For columns that already exist, set column()
replaces the data in the spreadsheet with the version updated using the script. For instance, if you
were to retrieve the “trial” column from a spreadsheet and then make some changes, you would use
set_column() to write those changes to the spreadsheet, replacing the old data with your new data.

If the column does not already exist in the spreadsheet (for instance, if you create a new column using
makeNewColumn()), set_column() will instead create a new column in the spreadsheet.

[¢][1T L]

column RColumn object (required) Ruby container of the column that you are inserting into the
spreadsheet (mndifinr{ output of createNew nn]11mn() or gpfnnl11mn())

Important: You must specify a value for the column parameter. If you are also passing a value for
the name parameter, the order of arguments must be name followed by column.

Returns

None

Example

The following example retrieves the Datavyu column “trial” and assigns it to a Ruby variable called
trial. After some modifications to the trial object, it writes those changes back to the spreadsheet
using set_ columny().

require 'Datavyu APLrb'

begin
trial = getColumn("trial")
<some modifications to trial >
set_ column("trial", trial)

end

smooth columny()
smooth__column(colname, tol=33)
Tweaks cell onsets so that there is a maximum of tol milliseconds between each cell. If two cells are

less than tol apart, it moves on to the next pair of cells; if there is a larger gap than tol, the second
cell’s onset is set to the first cell’s offset.

(]2 [L]

colname String Name of the column that you wish to modify.

87

tol Integer The tolerance you are willing to accept between a cell's offset and the next cell’'s onset. By
defarlt thic ic 232pc

ACTault, S 15 O911T1ST

Returns

Nothing. In addition, smooth column() automatically writes its changes back to the spreadsheet, so
you do not need to write the changes using setColumn().

Example

The following example checks the “trial” column’s cells to ensure that a maximum of 50ms between a
cell’s offset and the subsequent cell’s onset.

require 'Datavyu APLrb'
begin

smooth_column("trial", 50)
end

transfer columns()
transfer _columns(db1, db2, remove, *varnames)

)

Transfers columns between spreadsheets. Replacing dbl or db2 with the empty string ‘’, will refer

instead to the currently open spreadsheet in Datavyu.

Thus, if you want to transfer a column into the GUI, set db2 to ’, and specify the origin spreadsheet
file as db1. If you want to transfer a column from the GUI into a file, set db1 to ’, and set db2 to that
file’s path.

Warning: Setting remove to TRUE will DELETE THE COLUMNS YOU ARE
TRANSFERRING FROM DB1.

[¢] 2L [L]

db1l String The full path to save the first Datavyu file. Set to *' to use the spreadsheet that's currently

db2 String The full path to save the second Dr;atavyu file. Set to "’ to use the spreadsheet that's

currently open-
remove Boolean If TRUE, Datavyu will delete the columns from db1 as they are copied to db2. FALSE

B B B teaves thecolumms-intact: B
varnames list of strings List of the names of the columns that you wish to copy from dbl to dbl. You

- @ @ @@ @ @ mustspecifyatleastonecolumnname— 00000

Returns

Nothing. Saves files in place or modifies the GUI.

Example

The following example transfers the column “idchange” from test.opf to the GUI and leaves test.opf
intact and unmodified.

88

require 'Datavyu APLrb'

begin
sourceFile='/Users/datavyutester /Desktop /FileNamel.opf'
destinationFile—'/Users/datavyutester/Desktop /FileName2.opf'
columnsToTransfer — ['trial rel', 'condition rel'|

transferMy Variable(sourceFile, destinationFile, false, columnsToTransfer)
end

See also:
The Glossary
See also:
The Glossary

89

90

Chapter 3

Frequently Asked Questions

3.1 General

3.1.1 What is Datavyu used for?

Datavyu is a video coding and data visualization tool for collecting behavioral data from video.

3.1.2 Can I use Datavyu to analyze data?

Datavyu is a data coding tool, not a statistical analysis tool. You can export data from Datavyu in a variety
of forms depending on your analysis needs. See the Ezport Data from Datavyu and Use Scripts to Export
Data from Datavyu tutorials for more information.

3.1.3 What video formats does Datavyu support?

Datavyu supports all video formats that Quicktime or VLC can play, including .mp4, .asf, .wmv, .avi, flv,
.mov, .mpf, .ogg, .mpg, .nsc, .wav, and .dts. Please test video playback on each of your computers in your
work environment by downloading Datavyu, and playing video data you plan to code.

We highlight suggest using the Quicktime plugin because the VLC plugin has known timing problems
which could lead to inconsistent coding.

3.1.4 Can I code sources that are not videos?

Yes, we mostly support video data but other sources can be analyzed in Datavyu as well.

3.1.5 Is there somewhere I can share or store my spreadsheets and videos?

Yes indeed! Databrary is a web-based repository for open sharing and preservation of video data and
associated metadata. The project website has more information about the initiative and a guide to help you
get started.

3.1.6 Do I have to pay for Datavyu?
No! Datavyu is a completely free and open source program. If you would like to contribute to the development

of Datavyu, see: the source on GitHub.

3.1.7 What is Datavyu’s citation?

Datavyu Team (2014). Datavyu: A Video Coding Tool. Databrary Project, New York University. URL
http://datavyu.org.

91

http://databrary.org/
https://github.com/databrary/datavyu
http://datavyu.org

3.2 Technical Requirements

3.2.1 Which operating system is Datavyu available for?

Datavyu builds are available for both Windows and Mac OS X. You can download either version from the
Datavyu Downloads page.

3.2.2 Do I need any additional software to run Datavyu?

Datavyu requires Java, and either Quicktime or VL.C. See Requirements for more details.

3.2.3 What hardware do I need to code data sources in Datavyu?

Datavyu makes extensive use of a the keypad for controlling video playback. If your keyboard does not have
a keypad (for example, if you’re working on a laptop), you will need to acquire an external keypad.
Beyond that, there are no specific hardware requirements.

3.2.4 Do I need to be connected to the internet when using Datavyu?

No! Datavyu runs entirely on your computer. If you are connected to the internet, however, Datavyu will
check to see if there is a new version of Datavyu that you can download. See Keep Datavyu Up-to-Date for
more information.

3.3 Support

3.3.1 I’ve never coded video data before. How should I start?

We are writing a Best Practices Guide to provide detailed tips and advice to help you start coding behavioral
data from video.

3.3.2 Where can I learn to use Datavyu?

The Datavyu user guide provides comprehensive documentation of Datavyu’s interfaces and capabilities, as
well as tutorials to guide you through common tasks.

3.3.3 I’'m not sure how to best code my data? Are there guidelines for coding?
The Best Practices Guide will provide in-depth instructions and suggestions for coding your behavioral data.

It is coming soon!

3.3.4 What is the best way to prevent data loss?

We suggest that users pull all of their spreadsheets to the desktop before coding them. After coding, users
can ship their spreadsheets back to their folders or hard drive.

3.3.5 How do I update Datavyu?

When you first start up Datavyu while connected to the internet, Datavyu automatically checks for new
versions and prompts you to update if there is a new version. See: Keep Datavyu Up-to-Date for more
information.

3.3.6 Where can I ask questions about issues I’'m having with Datavyu?

Post your questions to the Datavyu support forum and Datavyu maintainers and users will help you find
the answers you're looking for.

92

http://datavyu.org/download/
http://datavyu.org/download/
http://datavyu.org/support/

3.3.7 I have found a bug in Datavyu! How can I report it?

If you find a bug, you can post to the Datavyu support forum or email the Datavyu team, Datavyu Support.

3.4 API Scripts

3.4.1 What is a script?

A script is a collection of code that performs actions on a file or spreadsheet. You could write a script to
add a column, add codes to a column, duplicate and move data around, or export data to a convenient file
format for analysis with SPSS, for example. See the Ruby API guide for more information.

3.4.2 DI’m not a programmer - where can I learn to write scripts?

The Ruby API guide provides an in-depth introduction to scripting with Datavyu’s Ruby API, tutorials that
guide you through common scripting tasks and detailed method reference for each API component, to help
you learn how these components work together.

If you’re completely unfamiliar with programming, going through the Ruby language’s Learn Ruby in
Twenty Minutes tutorial may be helpful. Ruby is an easy-to-read programming language which was designed
to be intuitive and easy to learn, so gaining the basics should be feasible.

3.4.3 What can I use scripts for?

You can write scripts to import, manipulate, and export data. The API Tutorials describe common tasks
you can write scripts to accomplish.

3.5 MacSHAPA and OpenSHAPA

3.5.1 I have existing MacSHAPA files - can I convert my them to Datavyu?

Yes! You can import a MacSHAPA file into Datavyu through a simple script. See Convert MacSHAPA Files
to Work in Datavyu for details.

3.5.2 I have existing OpenSHAPA files - can I convert them to Datavyu?
Yes! You can open your OpenSHAPA files in Datavyu like you would any other Datavyu file.

3.5.3 Will my MacSHAPA queries work in Datayvyu?

Unfortunately, MacSHAPA queries do not work on the new Datavyu format. You will need to write new
scripts for your Datavyu spreadsheets.

3.5.4 Will my OpenSHAPA scripts run in Datavyu?

Yes! You can easily convert an OpenSHAPA script to work in Datavyu by adding require 'Datavyu_APLrb'
to the top of your OpenSHAPA script file and removing the OpenSHAPA API code that precedes the script.
For more information see the Convert an OpenSHAPA Script to the Datavyu Format tutorial.

93

http://datavyu.org/support/
mailto:info@datavyu.org
https://www.ruby-lang.org/en/documentation/quickstart/
https://www.ruby-lang.org/en/documentation/quickstart/

94

Chapter 4

Walkthrough Videos

We have produced several videos that help illustrate Datavyu’s strengths and guide users through common
tasks:

4.1 Tutorial Videos

4.1.1 Datavyu Components & Playback

Learn about Datavyu’s media player and video controller. Discover the power of Datavyu’s fingertip playback
control. For more information see Getting Started and Controller Overview.

4.1.2 Time-Lock Events Codes to Video: Cells & Coding Spreadsheet

Learn how Datavyu time-locks video events to the coding spreadsheet. Dive into how a coding column and
a “cell” within a coding column work. See examples of time-locking events to video. For more information
see Spreadsheet Overview and Configure Columns and Codes.

4.1.3 Time-Lock Events Codes to Video: Coding Timestamps

Learn how to use Datavyu’s fingertip control functions to time-lock video to the coding spreadsheet.
Explore three ways of inserting timestamps with appropriate use cases. For more information see
:doc:’/guide/tutorials/add-cells’.

4.2 Short Walkthrough Videos

4.2.1 Modifying Columns & Font Size

See how to create, rename, and move columns. Learn how to increase and decrease font size on cell codes
by “zooming.”

4.2.2 Modifying Codes with the Code Editor

See how the Code Editor can be used to create new columns and codes, rename codes, and change code
order.

4.2.3 Spreadsheet Temporal Alignment

Watch how cells can be viewed relative to their duration across columns using temporal alignment in the
coding spreadsheet.

95

4.2.4 Modifying Columns with a Script

See an example of how scripts can be used to modify coding spreadsheets. Learn about scrips with Ruby
API documentation

96

Chapter 5

Coding Example

5.1 Watch an Expert User Code

Use the provided coding example and video to practice coding.

5.2 Watch an Expert User Transcribe

Watch a transcriber use Quick Key Mode to tag utterance timestamps and use Highlight and Focus to insert
transcripts into those newly created cells.

97

98

Chapter 6

Best Practices for Coding Behavioral
Data from Video

6.1 Watch a Presentation on Video Coding and Best Practices

Databrary and Datavyu are hosting regional workshops around the U.S. to share research tools and resources
to the science community. You can watch the regional workshop presentations and view the slides on
Databrary.

6.1.1 Overview of Coding Process

Welcome to the Best Practices Guide. These guidelines are intended as general suggestions for how to code
behavioral data from video. The guidelines will help you to make the most of Datavyu, but the general
principles are applicable for coding with any software tool or even for coding with paper and pencil.

Datavyu is agnostic about what researchers code and how they code it. This makes the software very
powerful and flexible, but it puts the responsibility of designing the spreadsheet and coding criteria on the
user. For a beginner setting out to code behavioral data for the first time, or a more experienced coder who
is new to Datavyu, figuring out where to start can be daunting. This guide will help you to get started and
will provide a framework for thinking about coding behavioral data from video.

If you have questions or comments about behavioral coding, please go to the Datavyu Support Forum.
Other researchers may have run into the same problems, posted similar requests, or have offered similar
suggestions for improving the coding process. Similarly, other researchers may benefit from hearing your
questions and comments.

While learning about best practices in behavioral coding, you may find it useful to reference the Datavyu
User Guide to learn more about Datavyu features and various aspects of the Datavyu spreadsheet and video
controller.

Video Coding as a Series of Filters

Your video files are your raw material. Video can’t capture everything that happens in a session, but with
a well-designed recording arrangement, video can capture the essential behaviors of interest. The data that
you actually analyze (e.g., with statistics) are not the raw video files. Instead, the data that you analyze are
derived from a smaller subset of information—categorical codes, durations computed from onset and offset
times, straight transcripts of speech, informal comments, and so on. Therefore, it is important that your
video recording arrangement allows your coders to see the behaviors of interest, that your codes reflect the
information you intend to capture, and that the data are in a format that permits you to run the analyses
you want to do. As Bakeman (2000) put it: “Occasionally investigators speak of videotapes as data, but
this seems a misnomer. Videotapes...are raw material, not data. Data...are the product of measurement;
videotapes are no more data than a hunk of marble is sculpture” (p. 144).

99

https://nyu.databrary.org/volume/1/slot/10068/-?asset=28062/
http://datavyu.org/support

Think of the video coding process as a series of filters. Your recording arrangement is the first filter.
Your participants emit behavior. Although video captures much of the richness and complexity of behavior,
your cameras cannot capture everything. Some of the behavior and some of the context pass through the
initial filter and that is what you capture on video. But some of what the participants do and some of
the physical and social context is immediately lost. Your video codes are the second filter. You will score
only a small subset of behaviors visible and audible on video. The rest of the behaviors are unused and
unexamined. What you choose to code, depends on your theoretical perspective. Your analyses are the third
filter. Time-tagged video coding (as enabled by Datavyu) provides information about the timing relations
among coded behaviors. However, most researchers analyze only the frequencies and durations of behaviors
they code and the timing relations (the order of events; what happens first and last; time lags between
events; etc.) are lost.

Poor choices in terms of your video recording arrangement and coding scheme will taint the entire process.
Good choices will highlight the questions you wish to address by focusing the camera, coding, and analysis
filters on the behaviors of interest.

4 Steps of Video Coding

Coding behavioral data is a multi-step, iterative process of planning, testing, revising, and refining. You
should expect to revise many aspects of your coding plan as the data present you with new information
and surprises. Even highly experienced coders should not expect to plan everything ahead of time because
new tasks, procedures, populations, and research questions affect participants’ behaviors. Indeed, one of
the great joys of coding behavior is that you will always discover new things. Thus, you will likely need to
rethink your plan a few times. Fortunately, getting started and making revisions and additions are easy to
do in Datavyu.

The overall process involves four steps, which are described in detail below. These four steps will help
you to avoid wasting time. We urge you not to collect hours of video before verifying that you can see the
behaviors of interest. Do not code hours of data before verifying that your coding scheme is reliable and
that you can export the data in a format that works for your statistical and graphical analyses. Otherwise,
you may spend valuable time collecting and coding data that you can’t use.

4 Steps of Video Coding

1 - Recordings 2 - Codes 3 - Checks 4 - Workflow
2 —» Collect video —» View videos & comment —» Check errors, check —» 1% coder code & check errors
2 recordings c Plan coding passes inter-rater reliability, 2" coder code & check errors
© %_ Design spreadsheet export data Check inter-rater reliability
g l = Draft coding manual l l
§ Verify you can § l é_ §
2| see behaviors 9 o | Code sample of videos 5] Export data for statistical/
i 3 Test on 4-6 examples 2| Check errors o graphical analyses
o per cell & | Check inter-rater reliability
g Run preliminary analyses
]

Revisit coding plan

Figurel: The process begins at Step 1 with a procedure for ensuring that your recordings capture the
behaviors of interest; the process ends at Step 4 with an exported file of variables that can be used for
statistical and graphical analyses. Each step involves multiple iterations (denoted by the looping arrows).
Ideally, earlier steps are completed appropriately before implementing later steps.

100

6.1.2 Step 1: Recordings—Verify That You Can See the Behaviors of Interest
Overview

Record a few videos with your intended study procedure. Verify that your video recording arrangement
allows your coders to see the critical behaviors of interest. If the behaviors are not visible, revise the camera
views. Once verified, begin collecting data in earnest.

What It Means to “See” Behaviors of Interest Remember, the video camera is a filter. If the
behaviors are not on camera, you cannot see them and you cannot code them; they might as well have never
happened. Datavyu allows you to view your videos at various speeds. Exploit this feature to determine
whether the behaviors of interest are adequately visible for coding.

On Camera Camera views make all the difference. With well-designed camera views, the behaviors
of interest are visible and large on the video frame. It can be advantageous to collect data from multiple
camera views: different behaviors may be visible from different angles, and it is often helpful to have multiple
perspectives on a single behavior. Datavyu can synchronize views from different video files or you can use
commercial software to merge and synchronize your camera views onto a single video frame. Often, the
critical behavior of interest is obscured on one camera view; multiple camera views ensures that you will
always be able to see the behavior.

Viewing Speed Visibility varies depending on the viewing speed. For many behaviors, you will want
to view the videos at speeds slower than real time. Datavyu provides easy, fingertip control over the viewing
speed with the shuttle keys—allowing you to slow down, speed up, or pause the video with a tap of a finger.
You can also view the videos frame by frame using fingertip control over the jog keys.

Rules of Thumb Use HD video for a crisper, higher resolution image. But, be aware of data
storage requirements. Most people don’t need the highest setting on their camera, which results in huge,
unmanageable files. Large files also require more powerful computers for playback. The “lowest” HD setting
is a lot easier to store and for most purposes looks great. Thus, consider the trade-off between higher
resolution videos and storage/processing requirements. Your camera lenses and apertures will also affect
whether the image is blurry, distorted, dark, or over-exposed.

In general, it is easier to code things you can see rather than things that you hear.

Use visual cues, not sound cues to demarcate sections of video. You can only hear sound while playing
the video in real time and it is difficult to determine when a sound begins or ends with frame precision. Use
visual contrast, not sound, to demarcate important sections of your recording session (e.g., new conditions,
new trials). Abrupt changes in contrast are easier to see than subtle visual changes, especially at faster than
real-time speeds (and you are likely to want to fast forward to different sections of your video). Flipping
the room lights on and off provides an easily implemented and visible demarcation of sections of the session.
Holding a bright card in front of a camera (with condition name or trial number) provides another easily
implemented and visible demarcation of sections of the session.

Use multiple camera views to capture both small body parts/small movements and the whole body /scene.
Small body parts, small movements, facial expressions, and eye movements are difficult to see when they are
small in the video frame.

Part of planning your recording arrangement involves thinking about your recording context. For
example, white skin is difficult to see against a light background and dark skin is difficult to see against a
dark background. So, create more visual contrast by making your background a bright or saturated color or
dressing the child in a bright or saturated color (we use bright blue carpets and mats because infants’ hands
and feet are clearly visible against them).

Video Example This video displays how easy it is to record videos that miss the behaviors of interest.
The experimenter was interested in understanding how parents teach children to open containers. You can
see by the video example that the single camera view is completely blocked by the parent.

Revise or add more camera views until you can thoroughly see your behaviors of interest.

101

How To Determine Whether Your Recording Arrangement Is Optimal After you've collected
data from a few sessions, open the video files in Datavyu and view representative portions of the videos at
various speeds, including real time, speeds faster and slower than real time (1x, 1/2x, 2x with the shuttle
keys, and frame-by-frame using the jog keys), and while moving backward through the video at various
speeds (-1/2x, -1x, -2x, jogging backward, etc).

Are the critical behaviors on camera?

Do the zoom and camera angle make it easy to see the behaviors of interest?

Can you see the frame when a behavior of interest starts and the frame when it ends or is it too blurry?

If you cannot see and hear the behaviors of interest, you will need to revise your recording arrangement
or rethink your goals for coding.

6.1.3 Step 2: Codes—Design a Formal Coding Scheme
Overview

To design a formal coding scheme, you will need to plan your coding passes, set up a template Datavyu
spreadsheet, and draft a coding manual that defines your codes. Test your coding scheme on a few examples
for each cell in your study design (e.g., each age and condition). As your draft criteria fail or new behaviors
emerge, revise your coding scheme (remember that revisions are to be expected). Consider the types of
analyses that you would like to run as you plan your codes and spreadsheet. Be sure that you can export
your data in a suitable form for your analyses and that your coding scheme is not too detailed or too vague
for your statistical and graphical analyses. You may have beautifully coded and reliable data, but if you
cannot, export it in a way that allows for analyses, you have nothing.

Coding Theory and Practice

Useful Definitions You may want to reference Datavyu’s User Guide to gain deeper understanding
of various key terms.

A code tags a section of video with an identifier. Codes for outcome measures typically reflect
the expression or non-expression of particular behaviors or traits. Codes can also represent participant
information, conditions, tasks, predictors, and independent variables. In Datavyu, codes are represented by
a cell in the coding spreadsheet or by a variable within the cell. When coders “code” video files, they insert
cells and type letters into prompts for each variable within the cell.

A coding manual describes and documents what coders should do (and what previous coders did do)
while scoring the videos. It formalizes the coding decisions by defining what each code represents, and the
criteria for coders’ decisions. This information is valuable for researchers who may analyze or revisit their
data months or years after its collection, for setting conventions within and across labs, and for sharing and
repurposing data. You likely want a separate coding manual for each study. You can use an existing manual
as a template to set up a new coding manual.

A coding pass reflects a complete scoring of a video file for one variable or set of variables. In Datavyu,
a pass is generally a column of cells with codes.

A spreadsheet organizes and stores your codes for a particular video file. In Datavyu, the spreadsheets are
the Datavyu files. Each spreadsheet is automatically linked with its corresponding video file. In Datavyu,
your codes are in cells and your cells are in columns. Regardless of coding software, you should expect to
develop your coding manual and set up your template coding spreadsheet in tandem. This is an iterative
process and you will likely need to make changes or want to add new coding passes and/or codes down the
line.

A comment is a note by a coder. Comments can be completely informal and used effectively to get
an idea of what behaviors of interest are on the videos. Comments can be more formalized (by adding
the coder’s name and date of comment) and used in a more serious way to locate excerpts, highlight
problems/discrepancies, or explain a coding decision.

The ordinal is the number of the cell in the sequence of cells in a column. Ordinals are an important
way to keep track of a sequence of cells or the identity of a cell when time is not useful.

102

In Datavyu, onset and offset times are the two times that accompany each cell. Typically, the onset
time marks the beginning of an event and the offset time marks the end of the event. Sometimes events
are continuous (e.g., when baby looks left, the look to the right ends; when baby looks away, the look to
the left ends). Sometimes events are isolated (e.g., after trial #1 ends, there are several seconds or minutes
before trial #2 begins). Sometimes only the onset or the order of events is important; in that case, you
can code using point cells, where there is only one time associated with each cell (onset and offset are the
same number). Sometimes onsets and offsets are arbitrary (maybe you want to assess a behavior every two
minutes or randomly sample 10 minutes of behavior from each hour); Datavyu scripts make time sampling
easy. Datavyu has special keys for entering onsets/offsets for continuous events, isolated events, and point
cells. Sometimes you will want to use onset or offset times as a way to link cells across columns. Note that
the notion of onset and offset is only a convention. In Datavyu, it is possible for the “onset” time to be later
than the “offset” time, if for example, you want one time to represent the start of event A and the other
time to represent the start of event B and sometimes B precedes A. In these cases, Datavyu will display the
cell with a red line (don’t worry, the red line is only a tag; it does not mean that you made a mistake unless
your code does not allow offset times to precede onset times).

In Datavyu, a script is a routine written in the Ruby programming language that allows you to
manipulate the data in your spreadsheet, add/delete codes from your spreadsheet, insert or delete cells
in your spreadsheet, insert or delete columns in your spreadsheet, conduct analyses on your codes, import
data into the spreadsheet, and export spreadsheet data in whatever format you desire. Scripts can operate
on a single spreadsheet or on all of the spreadsheets in a file (e.g., 100s of spreadsheets simultaneously).

Coding Criteria and Types of Codes Behavioral codes lie along a continuum. Implicit (sometimes
called “subjective”) codes are at one end of the continuum and explicit (sometimes called “objective”) codes
are at the other end of the continuum. The difference between the two types of codes is whether the
behavioral criteria for codes are implicit or explicit. Implicit codes do not require the observer to see
particular behaviors; explicit codes do require this. As illustrated in the following 2 x 2 table, the benefits
of one are the failure of the other. Implicit criteria allow coders to determine the code based on their own
judgments of what behavior is being expressed; coders can take individual differences between participants
into account. Explicit criteria force coders to determine the code based on whether a particular behavior
was expressed; individual differences between participants and particulars of the situation must be ignored.
With an implicit code for “falling,” for example, coders use their own judgment to decide whether the infant
lost balance in the particular instance. With an explicit code for “falling,” coders must use explicit criteria
such as whether the infant’s hands or bottom touched the floor, whether the transition from upright occurred
within a particular time frame, or whether an experimenter or parent grasped the infant’s body. With an
implicit code for “negative affect,” coders use their own judgment to decide whether a child feels distress or
anger. With an explicit code, coders must use explicit criteria such as whether the child’s brows were knit,
lip was jutted, mouth was in a square shape, or crying/tears were expressed.

RN 0 i VR
Type Implicit Coding Criteria Explicit Coding Criteria
Pros Reflect individual differences in the manner of expressing the target behavior Know how behavior was

expressed in each instance and individual
Cons Do not know how behavior was expressed in each instance and individual Tgnores individual differences in

manner of expressing the target behavior

Implicit and explicit codes can be equally reliable (in terms of inter-rater reliability and consistency
of participants’ responses) and equally valid (meaning that the codes reflect the behaviors you intend to
measure). The benefit of an explicit code is that you will know exactly what coders scored (e.g. baby
stopped for at least 0.5s at the edge of the obstacle with feet or hands touching the obstacle, etc.).

In some cases, implicit codes are your best bet and can assure you that an explicit code was sufficiently
exhaustive. For example, in a study asking whether infants defer to mothers’ advice about walking down
slopes, we worried that mothers’ delivery of encouragement or discouragement might have been influenced
by the severity of the slope of an incline; perhaps mothers did not encourage as enthusiastically on steep
slopes as they did on shallow ones or did not discourage as enthusiastically on shallow slopes as they did on
steep ones. Thus, we asked blind coders to judge whether the slope was shallow, steep, or intermediate and
whether mothers were providing an encouraging or discouraging message based solely on mothers’ behaviors.

103

With this implicit code, coders judged type of message nearly perfectly, but judged degree of slope exactly
at chance. We thus satisfied ourselves that the explicit codes were sufficiently exhaustive.

Implicit and explicit codes can be of any granularity. Datavyu can provide detailed frame-by-frame coding
(in milliseconds) and global approximate coding (region of video, ordinal only) or both. It’s entirely up to
you. Implicit and explicit codes can refer to durations (involving onset and offset times) and to categories
(did behavior occur yes/no; which of several behaviors occurred; what is the ranking of the behavior).

Non-behavioral codes can also be scored in Datavyu. For example, you can type in or import information
about participant demographics, the observational setting, various conditions and independent variables, and
so on. Non-video data can be imported into Datavyu if you use our code and Ruby API. You can import
your own data into Datavyu and use it to identify interesting sections of video or you can use the video to
identify interesting sections of other synchronized data streams.

Plan Coding Passes

Before Designing Your Codes Before planning your formal coding criteria, get an overview of your
videos. Watch a few representative segments of video (4-6 videos from each “cell” in your research design) in
real time. Watching bits of video from several participants or sessions will save you from basing your coding
scheme on behaviors that are not representative of your whole sample.

In Datavyu, you can create a “comment” column where you can jot down your ideas as you watch the
videos. Your off-the-cuff observations will be tagged to the approximate location of the event in the video
that prompted your thoughts. You needn’t even pause the video to do this.

When you feel that you’ve seen enough, start planning your formal coding scheme. You can refer back to
your comments and the corresponding portion of video using the “find” key on the Data Viewer Controller.

Start Simple Behavior is rich and complex, so it might be tempting to try to code everything at
once. Don’t do it! Instead, start simple. In Datavyu, you can use columns to capture information about
the participant(s) on the video and to delineate important sections of the session and to reflect your study
design. You can also use columns to capture the behaviors of interest.

Starting simple is especially important for researchers new to behavioral video coding and users new to
Datavyu. Please start simple!

Why Code in Passes? Coding in passes (scoring one set of measures all the way through a video file)
is faster, more efficient, and less tiring for coders than coding multiple passes simultaneously (e.g., watching
a trial to score it for one set of measures then watching it again to score it for a second set of measures
and so on). Coding in passes minimizes the need to watch the same short bits of video repeatedly to score
multiple behaviors. In Datavyu, you can code your variables in any order that you like. However, if you
adopt the recommended practice of coding in passes, you will code a set of measures all the way down one
column in your spreadsheet before coding another column. Datavyu, however, will allow you to code across
columns and to code the same segment of video repeatedly, and has shortcut keys to do so.

You may wish to use your first coding pass to delineate important sections of the session. Perhaps the
session begins with some introductory procedures (interview, questionnaire, set-up, etc.), is followed by the
target procedure, and then concludes with clean-up procedures. Or perhaps your recording session involves
3 studies or one study with several conditions. In these cases, your first column might reflect the overall
temporal structure of the session.

For your first content-loaded coding pass, focus on the behavior(s) most important to your study question
(e.g., did the baby say the correct word, did the baby go over the edge of the cliff, etc.). In other words,
start with the dependent measure that is most important, direct, and quick to answer the primary question
of your study (if you could pick only one dependent measure, this is the one to start with). Focusing your
first coding pass on the primary outcome measure(s) ensures that you will not waste time coding a sea of
variables that you might never analyze. You can code other, secondary behaviors in subsequent passes (e.g.,
where baby looked while naming the object).

Passes can be nested and interleaved. Conditions are nested within the participant, trials are nested
within conditions, and outcome measures are nested within trials. In Datavyu, you do not need to repeat

104

the more inclusive category for each nested category. Instead, you can tag each row of behavior with the
larger inclusive categories when exporting the data using scripts in the script library.

Natural behaviors are interleaved and overlapping. Some behaviors are ongoing while other behaviors are
stopping and starting (e.g. while child is talking, child touches and then stops touching a toy, etc.). Datavyu
does not require mutually exclusive codes (e.g. talk without touch, talk with touch, no talking without
touch, no talking with touch, etc.). This is a good thing because three types of behaviors are too much for
a coder to translate into mutually exclusive categories by themselves (e.g. talk without touch and without
look, talk without touch and with look, talk with touch and without look, etc.). You can code behaviors in
different passes to capture the interleaving and overlapping. This is much easier than trying to deal with
all the combinations of possible events. Exporting interleaved codes can be challenging so you should be
comfortable exporting simpler codes before tackling interleaved behaviors. After you are comfortable with
exporting simple and nested codes, visit the script library to find scripts for carving interleaved behaviors
into mutually exclusive categories for export.

Consider inter-rater reliability as a separate coding pass for each of the coding passes scored by the
primary coders. In Datavyu, you can do primary coding and reliability in the same spreadsheet by adding a
column for each reliability pass. To ensure that the reliability coder does not inadvertently cheat, you can
hide the column coded by the primary coder using the “hide column” feature.

Rule of Thumb: Minimize Pain, Maximize Gain Coding is a repetitive activity: Coders look for
particular behaviors and score them over and over across different participants and sessions for hours at a
time. So, minimize the requirements on coders’ attention and short-term memory. Design your codes so that
coders’ visual attention is directed toward a coherent set of behaviors that occur at the same relative places
in the video frame. For example, if the coder is scoring the person’s manual actions, they can easily attend
to the objects touched at the same time. Indeed, they cannot determine whether a reach occurred without
also noting the target of the reach. Do not ask coders to divide their attention between two regions of the
screen simultaneously. It is very difficult to attend to a person’s face, for example, while simultaneously
attending to the rest of the body; this would divide the coders’ attention.

Do not over code. You can always go back and add detail (and Datavyu’s scripts will facilitate this
process). So, start simple with the behaviors you are most interested in. Do not agonize over frame accuracy
if you do not care about the exact durations of an event. Just code what you want to analyze.

A related rule of thumb: If you have already seen it, you may as well code it. That is, if the coder already
knows something of interest without doing additional work, looking at additional video frames, or giving the
problem additional thought, then the coder may as well code that behavior. For example, if the coders are
scoring grasping actions, they also know what object is being grasped without the coders having to think
about it or look at any additional video frames; so they may as well code the target object. If the coders
are scoring the first frame when a child starts to walk and the last frame in the walking bout, the coders
know “for free” which foot the child used to begin walking and which foot the child used to end the bout.
However, the coders do not know without additional coding the timing of the other steps within the walking
bout.

Reciprocally, do not design codes that require a mental struggle to decide whether something has occurred
or not. The more a coder can’t decide whether a behavior occurred or which behavior occurred, the more
tiring and grueling is the coding process, and the less likely you are to get good, clean data.

Minimize “back-tracking” through the video. Coding is least taxing if the coders can move linearly
through an entire video, stopping only to identify the frames to mark onsets and offsets and fill in variable
codes within a cell. Thus, the coder might need to wiggle within a few frames to find the target frames,
but you do not want your coders to have to backtrack through the same segments of video repeatedly; they
should not need to view the same several seconds or minutes of video repeatedly to score variables.

Reduce short-term memory load. Make the prompts for each code transparent and accessible. When
possible, do not require your coders to remember the letters for codes (what you set in your coding
manual). In Datavyu, you can reduce the memory load by prompting the codes in the code name (e.g.,
<touch_t m b o> might prompt the coder to score whether the child touched a toy, the mother, self, or
other object). You can also reduce coders’ memory load by turning codes into yes-no options (e.g., <toy-yn>
<mother-yn> <body-yn> <other-yn> can be very quickly scored as y, n, n, n by tabbing through the codes
if the child touched a toy). Do not require coders to type 0-1 codes. No one can remember whether 0 = yes

105

and 1 = no or the other way around (or 0 = male and 1 = female, or 0 = left and 1 = right). Use letters
instead. Everyone can remember that y = yes and n = no (and m = male and f = female, etc).

Keep in mind that coding requires motor actions: Coders press keys over and over for hours. Thus,
exploit the features of Datavyu that minimize strain on coders’ eyes, hands, and brains. In general, you
want coders to move their hands as little as possible and their eyes as little as possible. Coders should
avoid moving their eyes down to the keyboard and avoid moving their hands from place to place on the
keyboard. Use letters that are accessible without moving the hand from a resting position. An example
hand position would be using the “home keys” because keyboards are designed to allow the greatest access
from that position. Avoid using the mouse! Mousing requires coders to move hands and eyes a lot. Another
good reason to avoid numerical codes is that in Datavyu, numbers must be typed using the number row at
the top of the keyboard because the number pad is reserved for controlling the video and the spreadsheet.
So to type a number, the coders have to move their hands to the top of the keyboard.

Minimize keystrokes by making your codes single letters. You can reuse the same letters in Datavyu
because each code stands alone (e.g., you can have 10 codes in a column that are all yes-no variables). Never
ever use capital letters. This adds a needless extra key press.

Set up the critical components of Datavyu (video images, Data Viewer Controller, spreadsheet) on your
computer screen in the way that best fits your personal preference and minimizes the need to move your
eyes and hands.

You will likely appreciate the temporal alignment feature of Datavyu that allows coders to immediately
see how one code is nested within another or aligns temporally with another. The alignment feature conserves
coders’ motor and psychological energy by providing them with an immediate visualization of the data they
are coding.

Design the Coding Spreadsheet Design the spreadsheet to make coding and exporting efficient and
straightforward. Think through each coding pass one by one.

In Datavyu, each column represents a coding pass. Start with a column containing the participant
information and a column (or multiple columns) to delineate sections of the session and conditions within
studies and trials within conditions. If your study is highly structured with trials, then you can code the
smallest experimental unit (the trial) at the same time as you code your primary outcome measure. Focus
first on your most important outcome measures. Include variables in the pass that coders can see “for free”
without having to shift their attention or think deeply (refer to Minimize Pain, Maxzimize Gain section, If
you have already seen it, you may as well code it).

In Datavyu, each cell in a column can contain zero or multiple codes. A cell will contain zero codes when
every cell represents the same type of event and you do not want additional information about each event
(e.g., the onset time is when the left foot comes onto the floor and the offset time is when the left foot leaves
the floor; or the onset time is when the eyes point at the target and the offset time is when the eyes leave
the target).

Because cells correspond to certain times, you may want to define onsets as the start of a behavior and
offsets as the end of the behavior, but this is not obligatory. If you don’t want to analyze time in terms
of durations of behaviors, you don’t have to stress over onsets and offsets. But if you do want to analyze
durations of behaviors, creating criteria for onsets and offsets is important.

Because each cell corresponds to a particular time (from the onset to offset), it usually makes sense for
all of the codes within a cell to correspond to the behaviors within that time interval. However, this is not
obligatory. Your cell can include information that occurred before the cell began or after the cell ended
(e.g., cell onset = when mother selects a toy and cell offset = when mother offers the toy to the child;
a variable within the cell reflects whether child accepted the toy, despite the fact that the acceptance or
rejection occurred after the offset of the cell, etc.). Build the prompts for each code with the “minimize
pain/maximize gain” rule in mind.

Video Example This video displays how easy it is to set up a draft spreadsheet. After the columns
and codes are added through the Code Editor, you can view the prompts provided for the coders.

Draft a Coding Manual Write your coding manual with a stranger in mind. When you revisit your
manual years later, you will be a “stranger” to the coding criteria. When new coders open your manual, they

106

will be strangers to the coding criteria. Write it for a stranger. Do not use acronyms or terms known only to
members of your lab. Use plain English instead. If you plan to eventually share your videos on Databrary,
you may also want to share your Datavyu files and coding manual.

More detailed documentation is better. For example, if your document contains only information like “o
= object touch” and “b = body touch,” your coders may not be reliable, the codes may not be replicable,
and the researcher who writes up the study may not have sufficient detail about the coding rules. More
detail will help. For example: “o = object touch. This behavior includes only touching detached objects
that the child could hold in one or both hands; at least one finger must be in contact with the object for at
least 0.5 s.” And “b = body touch. This behavior includes only touches with one or both hands to the other
arm, legs, head/face/hair, and torso; at least one finger must be in contact with the body for at least 0.5 s.”
It is acceptable to have several paragraphs to define a single code!

As part of the definition of a code, you can specify the optimal speed of viewing for a particular coding
pass or code. For example, some behaviors are easier to see by jogging frame by frame. Other behaviors are
easier to see at 0.5x normal speed or at normal speed. Sections of video (conditions/trials) can usually be
coded at 2x normal speed if they are well marked with a high-contrast prompt.

Outline the coding passes in the manual. List which scripts to run and when to run them to insert cells,
merge cells, export data, and so on.

Consider your coding manual as a “living document.” Even if you do not revise the codes, you are likely
to make changes to the coding manual by adding detail or fixing confusing language. Keep a record of who
made the changes and what date they were implemented.

Video Example This video displays one example of a Coding Manual that outlines the different codes
for the pass called “trial.” It contains detailed definitions for each code so future coders can easily pick up
the coding pass. It also contains pictures to accompany the written descriptions.

Test Your Plan Test your coding scheme by coding representative portions of video for several participants
(a few minutes from 4-6 participants per cell of your research design). It is best to test your coding plan
on participants you did not use to design your coding plan. You are likely to find that you will need to
revise your coding criteria or add/delete codes when you try out your scheme on new participants, a new
age group, or for a new condition. This is normal: behavior is rich and complex and happily, and children
do different things under different circumstances. However, if the coding feels unduly arduous and grueling,
you should simplify the codes to minimize cost to coders’ attention. It is usually better to code in multiple
passes than to code in one grueling, painful pass. In Datavyu, exploit the features of the software to make
every keystroke count and to make every shift in coders’ gaze and attention worth their while. For example,
if a behavior occurs earlier in the event, you may need to move the variable to an earlier spot in the variable
list.

Remember, designing a formal coding scheme is an iterative process. You need to start somewhere, test
it out, and then revise.

6.1.4 Step 3: Checks—Check for Careless Errors, Inter-Rater Reliability, and
Design the Format to Export Your Data

Overview

Check that the spreadsheets are free of careless coding errors and that inter-rater reliability is acceptable.
Test your initial plan on a small but representative subset of the video data (4-6 participants from each cell
of your design). At this point, you can get an idea of whether your coders and codes are likely to be reliable
and you can satisfy yourself that you can export your data in the format you need for statistical analyses.

Using Scripts in Datavyu One of the most powerful and flexible features of Datavyu is the scripting
function. In Datavyu, a script is a program written in the Ruby programming language that identifies
particular values of codes and durations, writes results to a csv text file, manipulates cells or columns
within spreadsheets, performs operations on values within cells, imports data into the spreadsheets, and
prints data for export. In Datavyu, you should use scripts to check that the spreadsheets are free of coding

107

errors and that inter-rater reliability is acceptable. Datavyu has a push-button export function, but this is
very rudimentary and will only create a text file that has the same information in the same order as the
spreadsheet.

Datavyu scripts are very powerful. You can use them to perform operations on a single spreadsheet
linked with one video file or on hundreds of spreadsheets linked with hundreds of videos simultaneously.
Thus, if you want to change the name of a code or add or delete a code, you don’t need to manually open
every spreadsheet and perform the operation from Datavyu’s code editor. Instead, you can perform these
operations over all the spreadsheets in a folder with one button click of a script. If you want to check your
file for typos, you do not need to rely on eyeballing the spreadsheet. Instead, you can write a script to locate
any typos. If you want to insert cells to check for inter-rater reliability, you do not need to insert each cell
manually. Instead, you can write a script to insert all the necessary cells at pre-specified intervals or random
intervals to prompt the reliability coder for onset or offset times and codes.

More generally, whenever you need to perform an operation over many cells or many spreadsheet files
(e.g., add new columns/passes, add new variables, change name of variables), use a script. The operation will
be nearly instantaneous. Check that the spreadsheets are free of careless coding errors and that inter-rater
reliability is acceptable. Test your initial plan on a small but representative subset of the video data (4-6
participants from each cell of your design). At this point, you can get an idea of whether your coders and
codes are likely to be reliable and you can satisfy yourself that you can export your data in the format you
need for statistical analyses.

Check for Careless Errors Coders make two kinds of errors. One kind of error is a careless error such
as a typo or its equivalent. The coder types a letter that is not a legal option; the coder forgets to mark an
offset time; the coder mistakenly inserts an extra cell or numbers trials out of sequence. Coders are human
and even the most diligent coder will inadvertently make careless errors. These kinds of errors are not serious
and can be easily fixed if they are caught before the coder shuts the file and checks inter-rater reliability.

Consistent use of codes is important for your analyses, but Datavyu will allow you to enter any value
you choose. Thus, you need a way to check that your nomenclature is consistently applied within and across
video files, that cells were inserted correctly, and that each cell has an appropriate onset and offset time.
In Datavyu, you can do this by writing a script to check for careless errors. You should ensure that all
of the codes are legal values (according to the coding manual). Check that all of the durations are within
acceptable limits (typically negative values are impossible). Check that all of the coded values follow basic
logic. If the child did not touch an object, then there can be no object code for that cell. If the child’s
latency to cross the cliff was Os, then the child could not have avoided going over the cliff or explored before
going over the cliff (because a latency of 0 means there was no time to explore and avoidance reflects the
total possible trial time). Thus, your error-checking script will identify typos, impossible relations, and out
of range values. In Datavyu, you can even determine the out of range values online based on just-coded files
with a script using the R-interface.

Video Example This video displays one way to check for errors (typos, impossible values, etc.) within
a spreadsheet.

Check Inter-Rater Reliability A second kind of error is an error in judgment. One coder thinks that
the child touched an object but a second coder does not think that the child touched the object. One coder
interprets the child’s facial expression as distress but the other coder sees it as neutral. If coders frequently
cannot agree about the codes for the same section of video, your coding scheme lacks inter-rater reliability.
Inter-rater reliability will be low if there is a problem with the coding criteria (e.g. criteria are ill defined,
criteria do not map well onto the behaviors, etc.) or if the coders are not well trained, or both. So, before
you commit yourself to a coding scheme, test inter-rater reliability. If it is too low, you may need to revise
your coding scheme or retrain your coders. Disagreements among coders are inevitable, even those who
are practiced and familiar with the coding scheme. The question is whether the inter-rater reliability is
sufficiently high to warrant confidence in the coded data.

108

How To Test Reliability Formally What level of agreement is sufficient to consider a code to be
reliable. The literature has no gold standard, but labs typically have their own gold standards. Generally,
for categorical codes, you should use Kappas (which control for the base rate of the behaviors) rather than
percent agreement. If you rely solely on percent agreement, then low frequency events will not be counted
fairly. For example, if you are coding child affect as positive/negative and children rarely express negative
affect (say, only 2-3 times per 100 trials), one coder could score positive for every trial without even looking
at the video and you will have 97% agreement. The Kappa statistic takes low frequency events into account.
For continuously scored behaviors, you can use the Kappa statistic to check inter-rater reliability frame
by frame. For isolated events, you can use a Pearson correlation coefficient. You can estimate Kappas in
Datavyu using scripts and the R interface, or you can estimate Kappas using statistical software after you
export your data. Regardless, disagreements among coders are serious and must be reported in the write-up
of the research.

Rules of Thumb By definition, careless errors will lower inter-rater reliability. Therefore it is
important to check for and eliminate careless errors before you test for inter-rater reliability.

Coders will experience “drift,” meaning that their coding will change slightly as they become increasingly
experienced at looking at particular behaviors. Therefore, it is important to check inter-rater reliability at
every point in the study—on initial sessions, in the middle of the study, and on the final sessions.

How much video should the reliability coder view to ensure inter-rater reliability? A good rule of thumb
is 25%. But because every child is different, your reliability coder should score 25% of each child’s data,
rather than 25% of the data. Which 25%? You can check inter-rater reliability at random intervals or regular
intervals—whatever is most appropriate for sampling over the dataset. In some cases, particular trials or
segments of video are especially important. In these cases, the reliability coder can score a larger percentage
of the data—up to 100%.

Spread your best eyes over the entire dataset. For a large amount of data where several people will split
the job of coding a particular pass, have your most experienced and knowledgeable coder score reliability so
that your “best pair of eyes” is looking at representative data over the entire dataset.

Video Example This video displays one way to check for inter-rater reliability for a single column in
a spreadsheet.

Export the Data in a Format Appropriate for Your Analyses From the beginning of the coding
process, keep in mind the data you want to analyze and how you want your data formatted for analyses.
Your coded data are what you will analyze. So, you should be sure that the way you code your data is
compatible with the way that you will analyze it. Think about how you want your data to look when you
export it from Datavyu to analyze it elsewhere (e.g., Excel, SPSS).

Variable Types Although we recommend using alphabet letters as codes rather than numbers, most
researchers prefer to analyze numeric data rather than strings. Although onset and offset times contain the
information you need to understand timing relations, most researchers prefer to analyze durations rather
than relative times.

Datavyu’s Export File function will export the strings and raw onset/offset times from the spreadsheet.
You can convert these data into numeric and durations in your analysis spreadsheet (with simple compute
functions in Excel or SPSS, for example). But you can also export the data in these formats using Datavyu
scripts.

Spreadsheet Format Most researchers like to analyze their data in square spreadsheet formats. Many
researchers organize the data with one row for the smallest unit of analysis (e.g., a trial, a look, a touch, a
facial gesture) and many rows for each participant. Some researchers maintain one row per participant and
organize tasks or trials across columns. Some researchers aggregate the data (e.g., by averaging over trials)
prior to export to maintain one row per participant.

Behavioral data have a naturally nested structure: Trials are nested within conditions; conditions in turn
are nested within sessions and participants. Facial expressions are nested within interactions and interactions

109

are nested in turn within particular situations within the session. Behavioral data are naturally interleaved:
One event is ongoing while another event is starting or ending.

Datavyu’s temporal alignment feature provides coders with immediate information about the nested and
interleaved temporal structure of events. Thus, we recommend that coders delineate the structure of the
session by coding cells to represent the larger and smaller nested units. However, the nested and interleaved
structure of events cannot be exported automatically without the user specifying with a script how they
would like to see the events formatted. Although Datavyu has an automatic Export File function, it will
not repeat information down rows of data unless the data are arranged like that in the spreadsheet. There
is no need to repeat participant ID or condition labels across every trial, however, because you can request
this with a script for exporting the data. Moreover, Datavyu’s automatic Export File function will not
carve overlapping and interleaved events into mutually exclusive categorical combinations (e.g., of talking,
touching, and looking). You will need to do this with an export script.

Video Example This video displays a user running a script to export data in a specific way. It exports
all of the columns of one spreadsheet into an Excel file. Instead of just exporting one cell from a Datavyu
spreadsheet, into one cell in Excel, it makes it possible to repeat important information that you want to
store in multiple cells. In this example, participant metadata (id, birthdate, testdate) is stored in only one
cell in a Datavyu spreadsheet but it is information that gets repeated down multiple rows of data to make
it potentially easier to analyze in a statistical program.

Test Your Plan After coding representative video files from each cell of your research design, test your
plan using scripts. Run scripts to ensure that you will catch careless errors before you export your data.
Run scripts to ensure that your codes are reliable among multiple coders. And run scripts to verify that
you can export your data in the format you need for analyses. If you cannot export your data using only
the Export File function, you will need to use scripts to export your data from Datavyu in the format you
want using the Ruby scripting language. Push a small amount of data (preliminary data if you prefer) all
the way through to the analysis spreadsheet to assure yourself that your data are in the appropriate format
for analyses.

6.1.5 Step 4: Workflow—Establish a Workflow and Code Videos
Overview

Now that you have a functioning coding scheme and manual, and have a plan for exporting and analyzing
your data, you should establish a workflow and code videos in earnest. Use a template spreadsheet. Keep
your video and Datavyu files and scripts organized into folders. Your primary coder should score a file and
then check it for errors. The reliability coder goes next, scoring the file and checking it for errors. The two
coders check their reliability and make decisions about disagreements. Then export the data into an analysis
spreadsheet.

File Organization Keep your files well organized. You might want an overall study folder that contains
smaller folders to hold paperwork, video files, Datavyu files, and so on.

Establish a standard naming convention for each file type and stick to it. For example, Crawler10-01.
mp4, Crawler10-01.opf, Crawler13-23.mp4, Crawler13-23.opf, Walker13-08.mp4, and Walker13-08.opf might
represent infants from crawling and walking groups at 10 and 13 months of age; the numbers after the
dash might represent their participant IDs; the file extension denotes video and Datavyu spreadsheet files.
Naming conventions will make your files easier to find by members of your lab and will make your data easier
to share with other labs.

If you keep video files in the same folder on the same path as they were when you originally opened them,
Datavyu will automatically find them for you when you open the corresponding spreadsheet. Otherwise,
you can link them to the spreadsheet manually. If you keep your Datavyu files in the same folder, you can
easily run scripts over all of the files in the folder. You can backup your video files onto a hard drive or you
can use Databrary as your video file backup prior to sharing with the larger community.

110

Keep a formal record of who coded what passes on what video files and what date they did it. Do the
same for reliability coding, and for whether discrepancies among coders were checked or discussed. You
might also assign coding jobs using the same record-keeping system.

Keep your coding manual up to date. If the codes change, make a note of who implemented the change
and what date the change was implemented. This will help you if you need to go back to recode portions of
video or if you need to distinguish changes in the code in your analyses.

Template Spreadsheet Keep a template spreadsheet in your study folder on your computer. This
spreadsheet has the latest version of the codes for each pass, but the columns are blank. When you are ready
to code a new participant, duplicate the template and save it with the appropriate file name. You can keep
the template up to date by making changes globally to all of the files in a folder using a script.

File Storage Keep your data safe. Back up your video and Datavyu files. You can store your videos
and Datavyu files on Databrary to ensure safe and secure storage and backup.

Coding Workflow Create a workflow that suits the operation of your lab. In general, an efficient workflow
minimizes errors and maximizes coder’s time on task.

First Coder Code and Check Errors You will have a primary coder or set of coders for each
pass. The primary coder will code the pass through the entire video file. When finished, before shutting the
spreadsheet, the coder will run the check error script for that pass. The coder will correct all of the identified
careless errors. Then the coder will note in your formal records that the pass is finished and ready for the
reliability coder.

Reliability Coder Code and Check Errors The reliability coder will code a subset of the video file
(25% or so) for that pass. In Datavyu, the reliability coder scores data into a new column and the codes
from the primary coder’s column are “hidden.” When finished, before shutting the spreadsheet, the reliability
coder will run the check error script for that pass. The coder will correct all of the identified careless errors.
Then the coder will note in the records that the reliability pass is finished.

Check Inter-Rater Reliability Now the coders will check their inter-rater reliability. In Datavyu, to
check inter-rater reliability, you will run a script that identifies times, codes, or trials where coders disagreed.
The rate of disagreements must be reported in the published report of the study. Likely, the final analyses
of inter-rater reliability for that pass will be conducted after all of the files are coded. However, checking
inter-rater reliability intermittently ensures that none of the coders experience so much drift that the codes
become unreliable.

Typically, researchers analyze the data produced by the primary coder and do not analyze the reliability
coder’s data beyond ensuring inter-rater reliability. However, known errors need not be entered into the
primary data analyses conducted on the column of data produced by the primary coder. Instead, if the
coders determine after discussing each disagreement that the error was committed by the primary coder,
they could swap the codes between the primary and reliability coders (thereby retaining the same inter-rater
reliability), noting the swap if desired. In this way, known errors are eliminated from the final analyses on
the primary coder’s data. Note that if errors are eliminated in this way, you must keep a record of the
original disagreement so that you do not inflate your reliability statistics.

Export Data In Datavyu, data can be exported incrementally after each file is coded (using the File
Export function or a script), after an entire coding pass is completed across the entire set of video files
(using a script to complete export in one button press), and/or after all of the coding passes are completed.
Researchers may prefer to analyze one set of variables as they become available rather than waiting until
the entire study is completely coded.

111

Share Your Data in Databrary Video files and Datavyu files can be stored and shared with lab members
and collaborators on Databrary as each session is collected. When the researcher is ready (typically, after a
paper describing the study has been accepted for publication), the video files and Datavyu files and other
metadata (coding manual, etc.) can be shared with authorized researchers in the Databrary developmental
and learning science community.

Turn all paper data into electronic files immediately after the session is completed. This will make it
easier for you to track participant permissions, keep your files organized, and share your data. Do not share
participant contact information on Databrary.

112

