
[2]p()*1/2-� [1]p1-� TJ
3 10000pt

0.00.5em

0.0.00.5em

0.0.0.00.5em

0.0.0.0.00.5em

0.0.0.0.0.00.5em

Datavyu Documentation
Release 1.3

Databrary Project

Aug 30, 2022

Contents

i

ii

Datavyu is a complete software package for visualizing and coding behavioral observations from video
data sources. Designed by - and for - behavioral scientists, Datavyu facilitates data coding and sharing
through the ongoing Databrary data library project.

Note: Datavyu is an open source software package. You should familiarize yourself with previous version's
release notes, to be aware of each version's features and potential issues. If you encounter a bug, you can
report it and get help by posting to the support forum.

In addition to the powerful software package, Datavyu provides a Ruby-based API to help you automate
common tasks and ensure accuracy in your data. The API greatly enhances the Datavyu experience, and is
well worth the e�ort of learning some programming fundamentals.

When you are ready to start using Datavyu, the following chapters outline everything you need to know
to become an expert Datavyu user, from �rst principles to advanced strategies.

1

http://databrary.org/
http://datavyu.org/download/
http://datavyu.org/support

2

Chapter 1

Software Guide

Datavyu is a Java-based application that runs on Windows, Mac, and on Linux operating systems. Its
primary goal is to link behavioral researchers with their video and to provide a way for researchers to record
their observations, extract their data for analysis, and share their work. Using a spreadsheet template that
speci�es which categories of events you're interested in coding, Datavyu enables researchers to record events
and build on prior analyses.

This guide provides all the information you need to start using Datavyu, with installation instructions, an
in-depth description of the software components, and a series of tutorials that target common operations. The
reference section lists terms and de�nitions, as well as detailing any �le format requirements and limitations.

1.1 Installation

Datavyu is a Java-based application, which is easy to install on Mac OS X and Windows. The following
sections describe Datavyu's system requirements and then the installation process itself.

1.1.1 Requirements

Hardware Requirements

The hardware requirements listed below are the minimum needed for Datavyu. More RAM or a faster
processor will improve Datavyu's performance, especially when working with higher-resolution data sources.

� 1GB of RAM.

� 1.2 GHz processor.

You will also need enough disk space for your videos and a keypad, either as part of your keyboard, or
as an external device.

Software Requirements

Datavyu requires Java 1.6 or higher. Many operating systems include Java by default, but if you have not
installed Java, you will need to do so.

The newest Mac build now has a built in version of Java. It no longer matters what version of Java is
on your computer because Datavyu will use the one that it installs.

Datavyu supports video playback through Quicktime.

Note: If you are using Quicktime 7.7.5 or later, you will need to simply custom install Quicktime to include
Java libraries in your version. The screenshot shows just how easy it is! Older versions of Quicktime can be
typically installed. If you are on Windows 10, please download QuickTime version 7.7.6 here. Later versions
of QuickTime will not work on Windows 10.

3

https://support.apple.com/kb/DL1822?locale=en_US

1.1.2 Install Datavyu

Mac OS X

1. Before downloading Datavyu, please be sure that your security settings allow the installation of non-
Mac applications. To change this permanently or temporarily go to System Preferences > Security
& Privacy. On the General Tab click the little lock in the lower left corner to unlock the general
preference pane. Then select �Anywhere� to allow Datavyu's installtion.

1. Download the latest Datavyu release for Mac OS X from the Datavyu website's Downloads Page.

2. You can drag this to your Applications folder, or some other preferred location on your computer.

Windows

1. Download the latest Datavyu release for Windows from the Datavyu website's Downloads Page. Unless
you've told Windows what to do with these types of �les, a File Download window will pop up,
prompting you to either Open the Datavyu-Windows-latest.zip �le, or Save it. Either option is �ne
- you'll merely need to navigate to the folder after downloading if you choose to Save rather than
choosing Open.

2. Unzip the program by opening the datavyu folder and double-clicking on datavyu. A �Compressed
(zipped) Folders Warning� will appear. Select Extract all to decompress the �les.

3. Windows will run the Extraction Wizard. Follow the prompts and extract the �les. The Datavyu
program is now available, but you need to install a video plugin before you can start using video with
Datavyu.

4

http://datavyu.org/download/
http://datavyu.org/download/

5

6

4. Install a video plugin. At present, Datavyu for Windows does not include any video plugins. To use
Datavyu, you must download Quicktime for Windows. If you already use Apple's iTunes, you likely
already have Quicktime for Windows. Otherwise, you may download Quicktime for Windows from
Apple's website.

1.1.3 Keep Datavyu Up-to-Date

Every time you start Datavyu while connected to the Internet, it checks to see if your version is the latest
available. When a new version is released, Datavyu will prompt you to download the latest version.

You can also check if your Datavyu version is up to date by opening the Help menu from the menu
bar when the spreadsheet window is selected, and then selecting Check for updates. . . . If a new version is
available, it will direct you to the download page where you can download the latest release. Remember to
replace your current application with the latest version of Datavyu that you have just downloaded!

Important: If you have found a work�ow that works well for you, please do not update your Datavyu
version. We suggest coding an entire study using the same Datavyu version.

During the course of development, the Datavyu team releases several pre-release versions of the software
prior to releasing o�cial stable releases. Pre-releases may contain new features not yet incorporated into the
main software, but are also more likely to contain bugs and to behave in unexpected ways.

To be noti�ed of pre-release updates, simply check the �pre-release� checkbox in the updates window.
Due to the increased potential for data loss or bug-related issues, you should only choose to use pre-releases
if you need an unreleased feature, or are grappling with a bug in the existing stable release that is �xed in
the unstable release.

Ultimately, all new features in the pre-releases are brought together and released as a new stable release.
Now that you have installed Datavyu, you can move on to Datavyu's Getting Started Guide.

1.2 Getting Started

Datavyu is a powerful tool that enables behavioral researchers to code observations from their video for
analysis. Designed by researchers for researchers, Datavyu provides an intuitive interface for working with
data sources and recording observations, and includes an API for more advanced data manipulation.

1.2.1 The Datavyu Interface

When you �rst open Datavyu, Datavyu will check if you have the latest version. If there has been a new
release, Datavyu will prompt you to update your version.

When you launch Datavyu, you will see two windows: the Controller, and a blank spreadsheet. If you
add a data source, a third window containing the data source will appear.

The following sections describe each component of the Datavyu interface.

Media Player

The Media Player is the window that presents the data source that the user is working with.
Adding a video or other data source to Datavyu is as easy as clicking on the Add Data. . . button in the

Controller. For a more detailed overview of adding data sources see: Add Data.
Once you've added a data source, it's time to add columns, create observations, and write scripts. The

tutorials are there to guide you.

Controller

The Controller allows users to control the playback of their data source and create observations in the
spreadsheet. Quite literally, it controls the Media Player, the window that contains the video data.

7

http://www.apple.com/quicktime/download/

8

The keypad can be found on the left side of the controller. This section maps directly to the number pad
on your keyboard, or to an external number pad if your keyboard does not have one and you've connected
one to your computer. These keys control playback, and also enable users to set the cell onset and cell o�set ,
create new cells and navigate within the data source. The Add Data. . . button enables you to add a data
source.

For more about the Controller, and a detailed description of its functionality and features, see Controller
Overview .

Spreadsheet

The Datavyu spreadsheet is where users record observations from the data source.

Figure1: This spreadsheet has four columns: �MomSpeech�, �InfantSpeech�, �MomObject�, �BabyObject�.
Each column has numerous coded cells.

Being able to Con�gure Columns and Codes enables coders to record observations and link them directly
to timestamps in the data source. Each user-de�ned column is represented by a column in the spreadsheet,
and observations within a column are sorted in chronological sequence. Looking horizontally across the
spreadsheet columns shows what was happening at a given point in time in the data source. Looking
vertically down a column shows the sequence in which the observations occurred.

The Spreadsheet Overview document describes the spreadsheet in more detail.

9

Controller Overview The Controller enables users to manipulate the playback of their data source, and
create new cells as they record their observations.

The Controller has two main areas: the keypad on the left, which maps directly to your keyboard, and
the Timeslider on the right, which represents the current playback position.

The following sections describe the two areas in detail, and provide a useful reference for working with
the Controller.

Keypad
Important: You cannot use the number keypad for inputting numbers into Datavyu. It will only perform
the actions described here.

The Controller's keypad maps directly to the number pad on your keyboard or external keypad and the
on-screen representation helps users remember what key performs what function. When you press a key
on the keypad, a visual indicator onscreen mirrors the keystrokes. Some keypads may change the ordering
of certain keys: for instance, some keypads may have a Num Lock key rather than a clear button but the
Controller takes di�erent keyboards into account and simpli�es the keys as much as possible. Familiarize
yourself with both the Datavyu controls and your keypad to maximize coding e�ciency.

Playback Controls

� jog left (1): moves the playhead back one frame. If the frame rate is not set, jog will move the playhead
in one second increments. Holding down jog left plays backward slowly.

� pause (2): pauses playback. Pressing pause again resumes playback. Pause only works if play (8) has
�rst been pressed.

� jog right (3): moves the playhead forward one frame. If the frame rate is not set, jog will move the
playhead in one second increments. Holding down jog right plays the source forward slowly.

� shuttle left (4): rewinds, initially at 1/32 of playback speed. Repeatedly pressing the shuttle left key
increases the rewind speed to a maximum of 32 times playback speed.

� stop (5): stops playback.

� shuttle right (6): fast forwards initially at 1/32 of playback speed. Repeatedly pressing the shuttle
right key increases the fast forward speed to a maximum of 32 times playback speed.

� play (8): starts playback.

In addition, shift �nd (+): jumps to the time of cell o�set .

Note: For users of Mac OS X: recent versions of OS X do not allow you to hold down a key as a default.
Instead it brings up a mini-menu to help you select common accents for that letter. If you want to be able to
jog by holding down the 1 or 3 keys, you will need to open your Terminal and run the following command:

10

defaults write -g ApplePressAndHoldEnabled -bool false

To undo the change, run the same command but with -bool true rather than -bool false.

Figure2: The keys highlighted in green are playback
controls. The keys highlighted in blue are coding-
controls.

Coding Controls

� set cell onset (7): sets the onset for the current
cell.

� point cell (=): creates a new cell whose onset
and o�set values are the playhead's current
position.

� set cell o�set (9 and .): sets the o�set for the
current cell.

� �nd (+): moves the playhead to the onset time
of the current cell, which is shown in the box to
the bottom right of the �nd button. Selecting a
di�erent cell will update this time.

� go back (-): moves the playhead back by the
amount of time set in the Jump back by box to
the right of the go back button. You can change
the increment by selecting that box and editing
the value.

� new cell and set previous o�set (0): creates a
new cell and sets its onset to the playhead's
current time. If the previous cell does not have
an o�set , adding a new cell with this key sets
the previous cell's o�set to the current playhead
time, minus one millisecond.

� new cell and set current onset (Enter): creates
a new cell and sets its onset to the playhead's
current time.

Tracks
Note: The tracks walkthrough video is a good way to familiarize yourself with this area of the Controller:

The Tracks area of the Controller helps you visualize where you are within a data source's playback. You
can control the scale using the slider bar in the top right: moving it to the right zooms in, allowing you
to manipulate smaller time periods than would otherwise be feasible. You can also zoom in on a selected
region by clicking on the magnifying glass icon next to the slider bar. The red playhead shows the current
playback position.

You can choose to focus on a single region by moving the green region boundaries. Datavyu will start
playback from the leftmost boundary's position, and stop at the rightmost boundary.

The Tracks area of the Controller also includes �ve buttons:

� Lock All : locks the tracks to prevent the user from changing the synchronization between multiple
tracks.

� Add Bookmark : adds a bookmark at the playhead.

11

� Snap Region: sets the region to the length of the selected cell: the left boundary is placed at the cell's
onset , and the right boundary at the cell's o�set . You can also use the ctrl + keyboard shortcut to
snap the region.

� Clear Region: removes the region boundaries. You can also use the ctrl - keyboard shortcut to clear
the region.

� Magnifying Glass icon: zooms in on the timeslider to focus exclusively on the snapped region.

Add Data

Important: Do not use the VLC plugin because it is not fully implemented and tested. It has frame
accuracy problems and therefore is not suggested. Please use Quicktime instead. If your videos do not play
smoothly in Quicktime, please convert your videos if you would still like to use Datavyu.

Datavyu currently supports video through QT. To convert video �le types, see: Convert File Formats.
If you are going to be working with multiple data sources see: Code Multiple Data Sources at Once.

Providing you have adequate processing power and a su�ciently strong graphics card, you should be able
to work with high-resolution video �les without challenge.

To add a data source:

1. Click the Add Data. . . button in the top left corner of the Controller.

12

2. A �le selection window will open. Select the data �le you will be coding.

3. If the data source is a video �le and Datavyu is unable to determine its frame rate, it will ask you what
the video's frame rate is. You can determine the frame rate by opening the video in QuickTime Player,
and selecting Show Movie Inspector from theWindow menu. The Inspector presents information about
the video. The frame rate is labeled FPS, or frames-per-second.

Datavyu uses the frame rate to accurately play and jog through videos, so it is important that you set
the correct frame rate.

4. If Datavyu cannot read your video's frame rate or if it reads the wrong frame rate. You can manually
set the frame rate by double clicking on Steps per second and writing the correct frame rate. Please
press Enter and Datavyu will use your new frame rate.

See also:

� Spreadsheet Overview

� Tutorials

Spreadsheet Overview The Datavyu Spreadsheet is where coders record observations. The spreadsheet
is the core of Datavyu. Coders can record observations and link them directly to timestamps in the data
source when they Con�gure Columns and Codes.

For a brief introduction to some of the spreadsheet's components and capabilities, watch the spreadsheet
walkthrough video:

Each user-de�ned column has its own column in the spreadsheet. Cells are column entries, boxes in the
column, where coders record their observation data as codes. Cells follow each other in sequence: looking
vertically down a column shows the sequence of observations for that column.

Datavyu automatically links the times coded in the spreadsheet to the current time in the data source.
This allows coders to record the onset and o�set times of events in the spreadsheet. Coders can also jump
to a relevant time in the data source by selecting a speci�c cell in the spreadsheet and pressing �nd (+) on
the Controller.

Spreadsheet Tabs Datavyu allows users to open multiple spreadsheets at one time. When the program
opens, it opens a blank spreadsheet. This spreadsheet can be used to create a new �le or it can be closed if
you are working on pre-coded spreadsheets. Feel free to open as many spreadsheets as desired.

Users can work on multiple spreadsheets at one time. When �nished with coding, please be sure to save
each individual spreadsheet.

Columns Datavyu uses columns to group together related observations. In general, coders will code
the data source column-by-column meaning that they code one entire column before coding a new column.

Using the Code Editor, you can con�gure columns to represent any number of observations.
Columns have codes, which represent the feature that you are observing. For instance, a code could be

�Left hand touch�, or �Smiling�, or �Look left.� When coding the data source, coders can record the presence
or absence of these codes and/or potential values within them. Columns can have as many or as few codes
as you want. If you want to score durations without scoring codes, you can leave the default code as is and
ignore the <code01> prompt.

Also note that column names are limited to the letters of the aphabet, numbers and the underscore symbol
(but numbers and underscores cannot be the �rst character of the name) to eliminate potential confusion
in scripting and SPSS analyses. The column con�guration tutorial provides instructions for con�guring
columns.

13

Figure3: A typical Datavyu spreadsheet with an example of �ve columns and Temporal Alignment turned
on. Note the plus icon in the top right, which you use to add new columns.

14

Hide and Show Columns To hide a column, select the column by clicking on its name at the top
of the spreadsheet. The selected column will have a blue background. You can select multiple columns by
Cmd -clicking (on Mac) or Ctrl -clicking (on Windows). Then, in the Spreadsheet menu, select Hide Selected
Columns.

You can also control each column's visibility from the Column List, which you access from the Spreadsheet
menu. The Column List shows all of the columns in the current spreadsheet, and includes a checkbox, which
you can use to toggle column visibility.

If you wish to show all columns you can do so with the Show All Columns menu option from the
Spreadsheet menu.

Rearrange Columns To rearrange the order of columns within the spreadsheet, simply click the
column's name and drag it left or right to the desired location.

Cells Each cell represents an observation scored by the coder.
Minimally, Datavyu displays three values for each cell, but you can ignore one or all of these values.

� onset : the �rst time value displayed on the top of the cell. If you don't code this value, the cell will
display the default value of 0:00:00:000. You can code a time value to mark the beginning of an event
or to tag the approximate time of an event.

� o�set : the time value displayed on the top right of the cell. If you don't code this value, the cell will
display the default value of 0:00:00:000. You can code a time value to mark the end of an event or to
tag the approximate time of an event.

� ordinal : the cell ordinal indicates the position of the cell within the column. The �rst cell (the one
with the earliest onset or the �rst cell you code if you do not mark onsets) would be number 1, the
second number 2, and so on. Ordinals are automatically coded and updated as you code your data
source. You will never need to set the ordinal.

The following image labels each component within a Datavyu cell.

15

Spreadsheet Customization Datavyu allows you to modify the spreadsheet by including options
that you can activate or deactivate, depending on your needs.

Zoom By default, the Datavyu spreadsheet uses one font size for the user-input codes in cells. You can
increase this font size by choosing Zoom from the Spreadsheet menu. However, the font size for the onset
and o�set times do not change.

You can also modify zoom using keyboard shortcuts:

� cmd + / alt + zooms in

� cmd - / alt - zooms out

� cmd 0 / alt 0 resets the zoom to the default level

Temporal Alignment Temporal alignment is an important feature of Datavyu. When temporal
alignment is active, Datavyu groups cells based on their onsets and o�sets, visually representing the period
of time each cell occupies. This Temporal Alignment video highlights the di�erences between active and
inactive temporal alignment:

Temporal alignment allows you to visualize what occurred at what time so you can compare event
sequences across columns. When coding, you should ensure that temporal alignment is active.

Figure4: At left is a spreadsheet with temporal alignment enabled; at right is the same spreadsheet with
temporal alignment disabled. Note that the cells contain the same information, it is only their presentation
changes. Note also that enabling temporal alignment makes it easier to code and alllows you to visualize the
relative length of events and their relations across columns.

Toggle Temporal Alignment You can toggle temporal alignment using the cmd T keyboard shortcut,
or by selecting Temporal Alignment from the Spreadsheet menu.

16

Keyboard Shortcuts We have provided a simple list of the major shortcuts used in the Datavyu
Spreadsheet.

[t]|T|T|T|
Action Mac PC

Temporal Alignment CMD T CTRL T
Snap to Region CTRL NUM+ CTRL NUM+

Clear Snap to Region CTRL NUM- CTRL NUM-
Jump to Current Onset NUM+ NUM+

Jump to Current O�set SHIFT NUM+ SHIFT NUM+
New Cell to the Left CMD L CTRL L
New Cell to the Right CMD R CTRL R

New File CMD N CTRL N
Open CMD O CTRL O
Save CMD S CTRL S

Save As CMD SHIFT S CTRL SHIFT S
Quit Datavyu CMD Q
Hide Datavyu CMD H

1.3 Tutorials

Datavyu Tutorials provide comprehensive guidance for common tasks you might wish to perform.

1.3.1 Add a Column

Add a column to create a new coding pass or a new set of codes.

1.3.2 Rename a Column

Rename a column to better re�ect your coding pass, to increase transparency, etc.

1.3.3 Delete a Column

Delete a column if the information is no longer needed.

17

1.3.4 Con�gure Datavyu Codes

Con�gure columns and codes to set up a spreadsheet for coding.

1.3.5 Add Cells

Add cells while coding or annotating a video �le.

1.3.6 Delete a Cell

Delete a cell if the information is not needed.

1.3.7 Export Data

Export Data from Datavyu into a statistical package, into a text �le, etc.

1.3.8 Use Scripts to Automate Tasks

Use scripts to automate tasks such as inserting, deleting, and modifying cells.

1.3.9 Code Multiple Data Sources

Code multiple data sources at once e.g., two or more videos recorded at the same time.

1.3.10 Convert File Formats

Convert �le formats into an appropriate format for Datavyu.

Add a Column

Datavyu represents sequences of events as columns in the spreadsheet.
Adding a column to your Datavyu project is simple. The following steps will guide you through the

process.

1. Open the Datavyu spreadsheet.

2. Click on the plus sign in the top right of the spreadsheet. The New Column window will open.

3. Input a name for it.

4. Select OK. The column will be added to the spreadsheet.

You can also add a column when you Con�gure Columns and Codes through the code editor.

Rename a Column

Datavyu provides four di�erent ways to rename a column using the Datavyu user interface.

Rename Directly from the Spreadsheet

1. Open the Datavyu spreadsheet.

2. Double click on the column name. The New Variable Name window will open.

3. Type in the new name for the column, and press Enter or click OK.

18

Rename Using the Spreadsheet Menu You can also change a column's name from the Spreadsheet
menu.

1. Open the Datavyu spreadsheet.

2. Select the variable name you wish to change. Selected variables have a blue background.

3. Select the Spreadsheet menu, and then Change Variable Name. The New Variable Name window will
open.

4. Type in the new name for the column, and press Enter or click on OK.

Rename From the Column List Using the Column List is another way you can change a column's
name. The Column List also has the advantage of allowing you to change multiple column names in one
place.

1. Open the Datavyu spreadsheet.

2. Open the Spreadsheet menu, and then select Column List.

3. Double click on the name of the column whose name you want to change, type in a new column name,
and press Enter.

Rename Columns Using the Code Editor Datavyu's Code Editor enables you to con�gure columns'
codes, but you can also edit the names of your columns' and codes'.

1. Open the Datavyu spreadsheet.

2. Open the Spreadsheet menu, and then select Code Editor.

3. Double click on the name of the column whose name you want to change, and type a new column
name. The spreadsheet will update automatically.

See also:

� Spreadsheet Tabs

� Add a Column

� Delete a Column

Delete a Column

To delete a column,

1. Open the Datavyu spreadsheet.

2. Select the column you wish to delete. The background will turn blue when selected.

3. Open the Spreadsheet menu, and select Delete Column.

Con�gure Columns and Codes

Each column may have a collection of one or more codes. Each code has a value that the coder inputs while
coding a data source.

Datavyu provides a Code Editor for con�guring columns. Check out our video walkthrough of the Code
Editor's features:

19

Open the Code Editor From the spreadsheet, click on the Spreadsheet menu, and then select Code
Editor.

The Code Editor window will open and list all existing columns and codes. From here, you can add and
edit columns and codes.

Add a Column Click on the Add Column button. A new column called �column1� will appear in the list
of columns. By default, �column1� has one code, �<code01>�.

You can change the name of the column or code by double-clicking on its name and typing a new name.

Add Codes To add a code to a column, select the column. You'll know you have selected it when its
background is light blue. Then, click on the Add <code> button.

You can change the name of the code by double-clicking on its name and typing a new name. To reorder
a column's codes, select the code by clicking on it, and use the Move <code> buttons to move it.

Rename Codes To rename a code, open the Code Editor, and double click on the name of the code you
want to change, and type the new name. The spreadsheet will update automatically.

Remove Codes To delete a code, select it by clicking on it, and then click on the Delete button in the
top right.

Video Example
Note: The next video displays how to use the code editor to set up a spreadsheet from scratch.

Add Cells

Datavyu represents events as cells in the Datavyu spreadsheet. Cells relate to columns because they capture
the events that you are coding in that pass.

This tutorial assumes that you have already con�gured your spreadsheet to include a column. If you
have not already created a column in your spreadsheet, start with the Add a Column tutorial.

20

There are three ways to add cells to a Datavyu spreadsheet: using the spreadsheet menu, using Click to
Create New Cell in the body of the spreadsheet, or using the Controller keypad. Controller keys are ideal
for creating cells while coding a video. Note that Controller keys give you more options for how to insert
cells and onset/o�set times.

Tip
Use the tab and shift-tab keyboard shortcuts or the arrow keys to easily navigate among codes within a

cell.

Add Cells Using the Spreadsheet Menu Using the spreadsheet menu to add cells to an existing column
is simple:

1. Click on the Spreadsheet menu and select New Cell. A new cell appears with the current play head
time as its onset and placeholders for any codes con�gured for the column.

2. Set the cell o�set using the Controller.

You can also add cells to neighboring columns by selecting New Cell to Left or New Cell to Right.

Add Cells Directly in the Body of the Spreadsheet Adding cells to an existing column is simple:

1. Click in the gray Click To Create New Cell area. A new cell appears with the current playhead time
as its onset and placeholders for any codes con�gured for the column.

2. Record appropriate values for the codes. For the �trial� column in the example spreadsheet, that means
�lling out the <trialnum> and <outcome> codes.

3. Set the cell o�set using the keypad on the Controller.

21

Add Cells from the Controller Adding cells using the controller is even easier than doing so from the
spreadsheet:

1. Navigate to the point in the data source that you want to be the cell's onset . Use the new cell and set
previous o�set (``0`) key on the keypad to create a new cell, set its onset based on your location in
the data source, and set the previous cell's on�set to 1 ms prior all in one go.

or

Create a new cell using the new cell (Enter) key on the keypad. The onset will re�ect your location in
the data source.

Delete a Cell

To delete a cell:

1. Open the Datavyu spreadsheet.

2. Select the cell you wish to delete. The cell will be outlined in blue when selected.

3. Open the Spreadsheet menu, and select Delete Cell.

Export Data from Datavyu

Datavyu provides an integrated export tool for exporting Datavyu data. To export your data, select the
File menu, and then select Export File. This outputs data to a CSV �le that has one column for every code
in the spreadsheet: ordinal , onset , and o�set , as well as user-con�gured codes.

If this format does not work for the analyses you need to perform, Datavyu supports Ruby scripting,
which you can use to create a script that exports the data in your desired format.

For a detailed guide to exporting data using Ruby scripts, see: Use Scripts to Export Data from Datavyu
in the Datavyu Ruby API documentation.

See also:
Use Scripts to Automate Tasks for instructions on running scripts within Datavyu.

Use Scripts to Automate Tasks

Datavyu provides a full suite Ruby scripting API to help you focus more time on coding and spend less time
performing routine tasks.

The Ruby API documentation guides you through writing scripts and provides context to help you become
an adept Ruby script-writer regardless of your programming experience. You can also watch a video version
of this tutorial:

Run Scripts Before you can run a script, you must write one. Refer to the Ruby API documentation for
scripting help.

1. Save your script as a .rb �le, and put it somewhere you will be able to �nd again, such as a Scripts
folder on your desktop, or the location where you store your Datavyu �les.

2. In Datavyu, select the Script menu. The Script menu has two options: Run script and Run recent
script.

3. Select Run Script to choose a script that you have saved.

4. A �le selection window will open. Navigate to the correct folder and choose the script you wish to run.

5. The Datavyu Scripting Console will open and run your selected script and display any errors that
may arise. If Datavyu reports a script error, use the provided information to �nd it.

6. You can close the Scripting Console when you receive a noti�cation that the script has run successfully.

Scripts that you have recently run will be listed in the Run Recent Scripts menu in the Script menu.
This makes it easy to repeatedly run the same scripts.

22

Code Multiple Data Sources at Once

With Datavyu, you can code multiple data sources in one spreadsheet. For instance, if you have three
di�erent camera views of an experiment, you can bring them together into Datavyu, and code them as one.

Adding multiple data sources is easy, but aligning them perfectly can take some e�ort. The following
sections guide you through the process.

Add Multiple Data Sources To add multiple data sources, simply add a data source using the Data
Viewer Controller's Add Data button. You can add as many data sources as you desire.

Each data source has its own line in the tracks area of the Controller. You can select an individual data
source by clicking on its blue bar. When selected, the bar will turn green.

Align Tracks To code your multiple data sources, you need to align them so that times recorded in the
spreadsheet are accurate for all data sources.

You will need to locate an event that you can use as the basis for synchronizing your sources. For example,
if the lights �ashed during the experiment, you could align the tracks at that point.

Align Tracks Manually To align your data sources, select one and drag it to align with the other
source. Increasing the zoom using the slider bar in the Controller can give you more granular control, and
facilitate precise alignment.

When you have successfully aligned your tracks, select Lock All. This prevents you from accidentally
desynchronizing the tracks. You can also lock a single track by clicking on its lock icon to the left of the
time slider. This can be helpful while synchronizing multiple tracks.

Align Tracks Using Bookmarks You can also use bookmarks to help synchronize tracks. If you
identify a distinct synchronization point, navigate to that point in the �rst track, and click the Add Bookmark
button. This will create a bookmark in that track.

Then, locate the same event in the other data source and bookmark it. When you drag the tracks to
align them, they will �snap� and align both bookmarks.

You can repeat this process with all the tracks that you need to synchronize, and then select the Lock
All button to lock their arrangement.

Saving Between Datavyu Uses When working with multiple data sources, Datavyu saves the data
source synchronization and bookmarks when you save the spreadsheet. This way, when you reopen the
spreadsheet to do more coding, or to work with the data, you will not need to re-synchronize the data
sources. This also helps ensure consistency between coding passes and reliability coders.

23

Convert File Formats

Datavyu currently supports video through QT and VLC.
If your data source is not directly supported by Datavyu, you may be able to convert it to a readable

format using Datavyu's Convert Videos tool.

1. From the Spreadsheet, select the Controller menu, and then choose Convert Videos.

2. Select a source video. This will be the video you are converting.

3. Select a target video. This is the video that Datavyu will output or convert your source video into.

4. Select Convert Video, and your video will be converted.

For help with data source conversion or other import issues, see Datavyu's Support site.

1.4 Reference

1.4.1 Glossary

API
An API (Application Programming Interface) enables disparate software components to interact with
each other by specifying functions or routines to perform tasks. Datavyu's API uses the Ruby
programming language.

argument
The information the user speci�es to a method for a given parameter. For instance, �charlie� might be
the argument speci�ed for the name parameter. See: Classes, Methods, and Parameters.

cell
A cell is a graphical representation of an observation. Cells are rectangles that stack in the columns
of Datavyu's spreadsheet and contain the observation data that a coder inputs when coding a data
source.

class
A pre-de�ned object type, that has associated attributes and methods. See: Classes, Methods, and
Parameters.

class method
A method that belongs to a class and must be invoked on an instance of that class. See: Classes,
Methods, and Parameters.

code
Datavyu codes are column components that researchers are observing. Each Datavyu column may
have multiple codes for which a coder will record observations. For instance, a column called �step�,
which refers to walking, might have a �foot� code that would di�erentiate between left or right feet,
and a �direction� code that indicated if the person was stepping forward or backward.

coding manual
Documentation for codes in a Datavyu spreadsheet. Should be written as if instructing someone with
no prior information about the spreadsheet or project.

coding pass
A pass intended to �ll in all �llable codes in a column. Coding passes can be aided by previous passes
so that work is not repeated.

24

http://datavyu.org/support/
https://www.ruby-lang.org/en/

column
Datavyu columns are phenomena or events that observations are collected about. Columns are key-
value pairs that associate a column name with a variety of codes. Columns can be general, such as
�trial� or �ID�, or can be speci�c, such as �step� or �hand�. Datavyu represents columns as a column in
the Spreadsheet.

comment
A code that consists of freeform text. Useful for recording unique observations in the data.

Controller
The Controller is a core Datavyu window that enables you to control playback of data sources, and to
record observations. See: Controller Overview

data
The audio or video �les that are being studied.

frame rate
Frame rate (also known as frame frequency) is the frequency (rate) at which an imaging device produces
unique consecutive images called frames. The three main frame rate standards are: 24p, 25p, and 30p.

integer
A whole number. Integers are numbers that are not fractions, and thus, which have no numbers after
a decimal point.

key-value pair
A data representation that pairs �keys� (some thing you have data about) with �values� (the data
itself). A key-value pair could be �telephone� and �555-123-4567�, for instance. Sometimes, values are
represented as a list of values, or as an array.

method
A de�ned action that you can perform. Methods may accept arguments in order to perform their
speci�ed tasks. See: Classes, Methods, and Parameters.

observation
An instance of the column that is being coded.

o�set
cell o�set

The end time of a cell.

onset
cell onset

The start time of a cell.

ordinal
The position of a cell within its column. The ordinal is indicated in the top left corner of each cell in
Datavyu.

parameter
The information that is methods use to perform their tasks. Parameters can be required or optional.
See: Classes, Methods, and Parameters.

playhead
The playhead indicates the current point of playback in the timeslider of the Controller.

region
The area of the timeslider that has been brought into focus using the timeslider's brackets.

25

reliability column
A Datavyu column that is a copy of an original column used to ensure that the coded observations are
accurate.

script
A program that performs a speci�c task.

spreadsheet
The core Datavyu window where coders record observations. See: Spreadsheet Overview

standalone method
A method that does not belong to a speci�c class. See: Classes, Methods, and Parameters.

string
In computing, a string is a linear sequence of characters. Strings can be random characters, words, or
sentences.

timeslider
The timeslider represents the length of the data source, and enables users to visualize where the
playhead is with respect to the entirety of the data source.

1.4.2 Naming Restrictions

Datavyu places certain restrictions on code and column names:

� Column names should not include periods.

� Column names must begin with a letter.

� The underscore is the only permitted special character.

� Datavyu also restricts certain names, making them unavailable for use. The following names cannot
be used as a column or code name:

-several.words.separated.by.periods -1stCharacterIsANumber -i_really_really_mean_it!!!!!!

If you're new to coding, or want to bone up on advice from the experts, consider the Best Practices Guide
for instruction on how best to harness Datavyu's capabilities, and tips for starting to code behavioral videos.

26

Chapter 2

Ruby API

The Datavyu scripting API provides a scriptable interface to Datavyu's spreadsheet, allowing you to
manipulate your data, export in any format you'd like, or check your data for errors.

27

2.1 Getting Started with APIs and Scripting

APIs, Application Program Interfaces, are collections of code that specify how software components
communicate with each other. Datavyu's API uses Ruby programming language, a popular object-oriented
language. Ruby is reasonably easy to learn, and novice programmers can start writing scripts with minimal
programming knowledge.

Before you dive into the API Tutorials, though, you should familiarize yourself with what an API is,
learn about Ruby's classes and methods and how they di�er, and follow the Introduction to Scripting .

2.1.1 Introduction to APIs

APIs, Application Program Interfaces, are collections of code that allow software components to communicate
with each other.

The Datavyu API lets users write scripts in a Ruby programming interface that can modify the contents
of Datavyu spreadsheets.

Suppose you have a dataset that contains �fty Datavyu �les and videos. After you analyze your data,
you realize that you want to go back and code a new pass for all of your �les. Instead of manually creating
a new column in all �fty Datavyu �les, you can write a script that will do it for you! The script can include
any and all desired codes within the column, and will save time and reduce the potential risk of error.

Or suppose you want to change the name of a code. You can use a script to make the changes across all
the relevant �les.

Or perhaps you'd like a reliability coder to score 25% of each participant's video. You can use a script to
create a �reliability column� and insert every fourth cell (or a randomly selected 25% or any other metric)
for a speci�c column.

Or maybe you want to check each �le for typos or impossible onset/o�set times. Use a script for data
checking!

Computers are ideally suited for doing repetitive tasks quickly and conistently. The Datavyu API enables
a researcher to perform these kinds of tasks programmatically so that doing a repetitive task becomes a matter
of writing a few lines of computer code and running the script.

Writing scripts with the API is straightforward and accessible to even a novice programmer. The ability
to use scripts to automate tasks greatly increases the ways that Datavyu can facilitate data coding and
analysis, and is well worth overcoming the initial learning curve.

Ruby and You

For a good introduction to Ruby, consider going through the Ruby in Twenty Minutes tutorial, which provides
a quick overview to working in Ruby.

28

https://www.ruby-lang.org/en/documentation/quickstart/

You do not need to be an experienced programmer or even understand the ins and outs of Ruby to be
able to write scripts with the Datavyu API. Following the API tutorials is a good way to become familiar
with scripting for Datavyu. With some practice, you will likely be able to customize the sample scripts for
your own purposes. However, gaining a grounding in some programming concepts will make it easier to
create your own scripts for your unique use cases and needs.

Consider Classes, Methods, and Parameters for an introduction to object oriented programming, classes,
and methods. Also, Introduction to Scripting discusses the requirements you should keep in mind when you
start writing scripts.

2.1.2 Classes, Methods, and Parameters

Ruby, the programming language that the Datavyu API uses, is an object- oriented language.

Classes

Object-oriented languages represent concepts, like Datavyu's columns or cells, for instance, as �objects�.
Objects come in di�erent types, or �classes�. For example, objects that represent numbers, strings (written
text), or Datavyu columns have di�erent classes.

An object can have a variety of attributes depending on the data that pertains to the object. In Datavyu,
a cell object's attributes would be its codes; a column object's attributes might be its cells, its name, and
its onset and o�set times. The class of an object de�nes what types of attributes a speci�c type of object
will have.

Thinking about Datavyu speci�cally, the �column� class describes the Datavyu columns. The �trial�
object in the example spreadsheet would then be an instance of the �column� class. This is in fact how
the Datavyu API works. The Datavyu API includes two classes to represent Datavyu concepts: RColumn
describes Datavyu's columns, and RCell describes Datavyu's cells.

Methods and Their Parameters

While classes describe objects and their attributes, methods de�ne actions that you can perform on an object.
The Datavyu API de�nes numerous methods to help you manipulate, modify, add, and delete data in the
Datavyu spreadsheets.

In order to work, many methods need additional information. For instance, getColumn(), retrieves a
column from a Datavyu spreadsheet so that you can modify or update it using your script. But it needs you
to tell it what column it should retrieve. Each method de�nes what information it can receive. These are
called parameters. getColumn() has one parameter: name, which is the name of the column that you wish
to retrieve.

Parameters are the types of information that you can specify for a method, and are speci�ed in the
method's de�nition (you can view all of Datavyu's method de�nitions on the API reference page).

The information you actually provide when you use the method is called an �argument�. Arguments are
user-speci�ed. For getColumn(), you might want to retrieve a column called �trial�, so �trial� would be your
argument for the name parameter. Again, parameters are part of the method's de�nition, while arguments
are the information you provide to the method.

For example, the add_codes_to_column() method enables users to add one or more codes to a column.
add_codes_to_column() has two parameters: column, the name of the column you want to update, and
*codes. The * indicates that the parameter is a list: so you can specify one (or more) codes as a list of
Strings.

Suppose you wanted to add two codes, �leftHand� and �rightHand� to the �arm� column. �arm� would
be your argument for the column parameter, and "leftHand", "rightHand" your argument for the *codes
parameter. column and code are speci�ed in the add_codes_to_column() method de�nition, and �arm�,
�leftHand�, and �rightHand� are your user-speci�ed arguments.

29

Standalone Methods and Class Methods

There are two di�erent types of methods: standalone methods and class methods. Class methods act directly
upon an instance of a speci�c class. Standalone methods perform actions on their own.

getColumn() is a standalone method that you use to retrieve a column from the Datavyu spreadsheet so
that you can modify it with your script. To retrieve a column called �trial� from the spreadsheet, you would
run:

getColumn("trial")

In contrast, add_code() is a class method of the RColumn class, and is invoked on an RColumn object.
Assuming that you have already retrieved a column called �trial� from the spreadsheet, and assigned it to
an RColumn object, the following code would add the newCode code to the �trial� RColumn object:

trial.add_code("newCode")

Comparing them side-by-side can help highlight the di�erence:

Understanding the di�erence between standalone and class methods will make it easier for you to easily
use the methods included in the Datavyu API.

Next Steps

Now that you have a grounding in the di�erence between classes and methods, parameters and arguments,
and know how to invoke both standalone and class methods, consider our Introduction to Scripting for tips

30

before diving into the API Tutorials.

2.1.3 Introduction to Scripting

This detailed guide describes how to write Ruby scripts to automate tasks in Datavyu and to ensure reliable
coding .

Classes, Methods, and Parameters provides an overview of the methods and classes of the Datavyu API.
For a more in-depth discussion of each particular method and function, refer to the Reference documentation.

Recommended Text Editors

Ruby scripts are simply text �les with a .rb �le extension. You can write scripts in any text editor, including
built-in ones like Notepad or TextEdit. However, while those programs are adequate for scripting purposes,
modern text editors make scripts much easier to read by providing syntax highlighting, which can make a
world of di�erence when attempting to debug an issue.

Figure1: At left: TextEdit (Mac OS X). At right: TextMate 2 (Mac OS X) with �Mac Classic� theme. Note
that add-cells-to-variable.rb is open in each editor.

To take advantage of syntax highlighting and coding support, we recommend installing and using one of
the following programs for editing Ruby scripts:

� Windows:

� Notepad++ (free and open-source)

� Notepad2 (free and open-source)

� Mac OSX:

� TextMate 2 (free and open-source)

� gedit (free and open-source)

� TextWrangler (free)

� Linux:

� gedit (free and open-source)

� kate (free and open-source)

31

http://notepad-plus-plus.org/
http://www.flos-freeware.ch/notepad2.html
https://api.textmate.org/downloads/beta
http://projects.gnome.org/gedit/
http://www.barebones.com/products/TextWrangler/
http://projects.gnome.org/gedit/
http://kate-editor.org/

Tip: Most text editors determine what kind of syntax highlighting to use based on the �le extension.
Please ensure that your Ruby script �les end with the �.rb� extension so you see syntax highlighting.

General Principles

Each cell that you create with the Datavyu API has three inherent codes: onset, o�set, and ordinal. Each
cell also has at least one user-speci�ed code.

onset, o�set, and ordinal are all Integers, while the user-speci�ed codes are Strings.
onset and o�set are measured in milliseconds from the beginning of the video, starting from 0.

For instance, an onset time of 00:02:20 translates to 140000ms.
Since user-speci�ed codes are strings, you must convert any codes that you wish to perform calculations

on to a numeric type. This is easily done with Ruby using the to_i method for integers, or the to_f method
for �oating point numbers.

Example
Create a variable, var1 whose value is �5�. Since the number 5 has quotation marks around it, it is a

string.

var1 = "5"

If you print var, you'd see that it is �5�. Create a new variable, var2 from var1 using to_i to convert the
�5� to a 5.

var2 = var1.to_i

Print var2 and see that it is a 5 without quotation marks:

print var2

Tip: Ruby provides two options for printing to the console: the p command and the puts command. When
in doubt, use p, as it prints arrays and lists in a more readable format, rather than mashing them all together
like puts does. Try printing a list such as [5, 6, 7, 8, 9] using both p and puts to see the di�erence.

p [5,6,7,8,9]
puts [5,6,7,8,9]

Basic Script Format

Tip: Scripts are very sensitive! When programming, every quotation mark, underscore, period, and slash
serve a purpose. You must use the correct syntax or the script will not work.

Code and column names are also case sensitive. If you have a column in a spreadsheet called �trial�,
requesting �Trial� will not work.

All code names in Ruby must be lowercase. Codes with uppercases have special meanings.

All Datavyu API scripts must include the following line at the top:

require 'Datavyu_API.rb'

This require statement loads all of the helper functions that enable your scripts to interact with the
Datavyu spreadsheet.

32

http://ruby-doc.org/core-2.0.0/String.html#method-i-to_i
http://ruby-doc.org/core-2.0.0/String.html#method-i-to_f

In general, the rest of the script code goes between begin and end tags, making the general format as
follows:

require 'Datavyu_API.rb'
begin
Get the columns that we want to work with

Do something to those columns

Write any changes to those columns back to the spreadsheet
end

Tip: Anything that comes after a # character on a line in Ruby is a comment, which means it will not
execute any speci�c task. Comments are useful for leaving notes that explain what the code is doing so that
when you return to an old script you remember what you're looking at. The examples in this documentation
use comments extensively.

Now that you are grounded in the Datavyu Ruby API mechanics, consider the API Tutorials or Datavyu
Ruby API Reference.

2.2 Core Documentation

The Datavyu Ruby API's core documentation is organized into tutorials and reference pages. Tutorials
provide step-by-step instructions for accomplishing common tasks with Ruby scripts. The Reference
documentation provides a detailed reference for every class and method included in the API. This can
be useful if you are uncertain about how to use a speci�c method or want an example of its use.

2.2.1 API Tutorials

Before You Start

Sample Data Most of the following tutorials use Example-Template.opf as their basic data �le.
The example template contains two columns: �id�, whose codes describe basic information such as subject

number, test date, birth date, and condition, and �trial�, which has two codes: trialnum and outcome.
The example has one cell in the �id� column and no cells in the �trial� column. Most of the Datavyu

tutorials use the example template as their basis, so if you want to follow along directly, you can download
it, and then open it with Datavyu (using File > Open and selecting the �le from your hard drive).

Most Datavyu scripts begin by loading a column from Datavyu using the getColumn() method. Before
moving on to the larger tutorial list, you should familiarize yourself with loading Datavyu columns.

Load Datavyu Columns To load columns, Datavyu provides the getColumn() method. getColumn()
takes one argument, the name of the column in Datavyu, and returns the Ruby representation of the column,
which you can work with.

The following script retrieves the �trial� column from the Datavyu spreadsheet and assigns it to an
RColumn object called trial.

require 'Datavyu_API.rb'
begin
Assign the Datavyu column "trial" data to a new Ruby object called trial.

trial = getColumn("trial")
end

33

The left side of the method is the name of the Ruby object; the �trial� in the parentheses is the argument
passed to getColumn() (the name of the Datavyu column).

Now that you're familiar with the sample data and know how to acquire data from Datavyu, you're ready
to start scripting. The following tutorials will guide you through common tasks.

Tutorials

Add a New Column Add a column to create a new coding pass or a new set of codes.

Add Codes to a Column Add codes to a column to prompt coders which behaviors to score.

Add Cells to a Column Add cells to a column while coding or annotating a video �le.

Check for Coding Errors Check for coding errors such as typos, impossible vlaues, unlikely values, etc.

Use Reliability Coding to Check Data Accuracy Check Inter-rater Reliability to Improve Data
Accuracy to determine whether more than one coder would score the data the same way.

Export Data Using Scripts Use scripts to export data from Datavyu into a text �le or a spreadsheet.
for statistical analyses.

Convert an OpenShapa Script to Datavyu Convert an OpenSHAPA script to the Datavyu format to
update an old �le.

Perform Operations on Multiple Files Batch operations on multiple �les to do the same operation on
more than one �le.

Convert a MacShapa �le to Datavyu Convert MacSHAPA �les to work in Datavyu so that you can
use the new, supported software.

Add a New Column Much like Add Cells to a Column or Add Codes to a Column, the Datavyu API
allows you to create a completely new column using the createColumn() method. createColumn() takes at
least two parameters: �rst, the name of the new column, followed by a list of the names of the new codes
contained in the column.

For example, suppose you wanted to add a column called �look� to your spreadsheet. And you wanted
�look� to contain two codes: direction and target.

1. Set up the script, and create a new column with its two codes. You will need to create a Ruby object
to hold the data until you are ready to write it back to the spreadsheet. In this example, the Ruby
object is called look:

34

require 'Datavyu_API.rb'
begin
Create new column
look = createColumn("look", "direction", "target")

2. Write the new column back to the spreadsheet and end the script:

require 'Datavyu_API.rb'
begin
look = createColumn("look", "direction", "target")

Write the new column to Datavyu's spreadsheet.
setColumn(look)

end

Add Codes to a Column Adding codes to a column is a straightforward scriptable task. The Datavyu
API provides the add_code() method for adding codes.

add_code() takes the names of the Datavyu codes you are adding as its parameters. This example adds
a code called unit to the �trial� Datavyu column in the sample data. The unit code might represent the unit
of measure used during an experiment.

1. Start by setting up the script and assigning the Datavyu column �trial� to a variable using getColumn().
You can call your variable whatever you want to. We're calling it trial in this example:

require 'Datavyu_API.rb'
begin
Retrieve "trial" data from Datavyu spreadsheet and assign it
to a new Ruby variable
trial = getColumn("trial")

2. Add the unit code to trial using add_code():

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")

Add the "unit" code to the trial variable
trial.add_code("unit")

3. Write the changes back to the Datavyu spreadsheet using setColumn() and end the script:

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
trial.add_code("unit")

Write the changes back to the Datavyu spreadsheet
setColumn(trial)

end

Add Cells to a Column Populating a Datavyu column with cells is another common task that you
can automate with scripts.

35

Suppose that you want to code behaviors within 1-minute long blocks. Rather than have the coder
manually insert each cell, you can write a script that will insert a �block� cell every minute, with the onset
set to the correct trial start time.

1. Set up the script and create the Datavyu column you will be working with into a Ruby variable. We'll
call it block here, but you can call it whatever you want to:

require 'Datavyu_API.rb'
begin
Creste the block column
block = createColumn("block", "code")

2. Create the �ve cells using a loop.

Programming 101

Loops are types of code that tell Ruby to do something multiple times. Let's break down the for loop
from the following example for those who aren't familiar with loops:

for i in 0..4
<do stu�>

end

Essentially, this says, �let i = 0, <do stu�>, then, for i = 1, <do stu�>. Then again for i = 2, for i =
3, and for i = 4. Once i = 4, stop doing stu�.� The 0..4 represents �from 0 to 4, inclusive�.

If you wanted to do something ten times, your loop could read for i in 0..9 or for i in 1..10, or for i in
99..108.

In this case, you will use the value of i to set the onset time of each cell, so having it start at 0 and go
to 4 makes sense.

Loop 5 times from 0 to 4, calculating the onset time to set for each new cell.

a. Since Datavyu API uses times in milliseconds, convert i (the minute marker) to milliseconds:

require 'Datavyu_API.rb'
begin
block = createColumn("block", "code")

for i in 0..4
Calculate the onset time in milliseconds
time = i * 1000 * 60

b. Then, create the new cell using make_new_cell() and store the cell as a Ruby object. For
simplicity, we'll call it cell:

require 'Datavyu_API.rb'
begin

block = createColumn("block", "code")

for i in 0..4
time = i * 1000 * 60

Create a new cell, called ``cell``
cell = block.make_new_cell()

c. Set the onset of cell to the value of the time variable using change_code(), and end the for loop:

36

require 'Datavyu_API.rb'
begin

block = createColumn("block", "code")

for i in 0..4
time = i * 1000 * 60
cell = block.make_new_cell()

Set "onset" to the value of the ``time`` variable
cell.change_code("onset", time)

end

3. Now that the loop is complete, write the changes back to the Datavyu spreadsheet and end the script:

require 'Datavyu_API.rb'
begin

block = createColumn("block", "code")

for i in 0..4
time = i * 1000 * 60
cell = block.make_new_cell()
cell.change_code("onset", time)

end

Write change back to the Datavyu spreadsheet
setColumn(block)

end

Check for Coding Errors Datavyu scripts have the ability to check for coding errors to make up for
potential human error. Inputting invalid codes is a common coding mistake. For example, a coder might
accidentally input an �h�, when only �j� or �k� are acceptable values. Using scripts, coders can double-check
their work for errors and �x them early on.

Datavyu API provides the checkValidCodes() method to check for coder errors. checkValidCodes()
requires at least three arguments: the name of the column it will verify, the location that it will output
the results to, and at least one key-value pair . Key-value pairs consist of a �key�, the name of a Datavyu
code, and a �value�, which is an array of valid values for that code. checkValidCodes() then checks each code
(key) against its list of valid values (the values).

The following examples check the look column against its codes. You can download the sample data used
in this tutorial from here.

Check Code Validity and Output to the Console

Basic Format
Example

require 'Datavyu_API.rb'
begin
Check for errors. Notice the square brackets. These denote
lists. The basic format is: "columnName", "dumpFile",
"codename", ["validcode1", "validcode2", etc],
"code2", ["validcode1", "validcode2", etc], ...

(continues on next page)

37

(continued from previous page)

checkValidCodes("look", "", "direction", ["l", "r"], "target", ["a", "b"])
end

Breaking down the function call makes it easier to follow what is happening. Recall that
checkValidCodes() takes (at least) three arguments: the name of the Datavyu variable it will be checking,
the location that it should direct the output to, and at least one key-value pair.

In the example, we have:

checkValidCodes("look", "", "direction", ["l", "r"], "target", ["a", "b"])

� "look" is the name of the variable to check.

� "" is the location that we want to export the output to. Using "" indicates that we do not want to
write the results to a �le, and that it should instead display in the Datavyu Scripting Console.

� "direction", ["l", "r"] is the �rst key-value pair, which speci�es that the �direction� Datavyu code
should only have the values �l� or �r�.

� "target" , ["a", "b"] is the second key-value pair, which speci�es that the �target� Datavyu code should
only have the values �a� or �b�.

Advanced Format You can perform the same veri�cation by �rst assigning the valid codes to objects.
This makes it is easier for human readers to parse the script, and makes it easy to modify or update in the
future.

1. Set up the script:

require 'Datavyu_API.rb'
begin

2. Assign each list of valid codes to a variable:

require 'Datavyu_API.rb'
begin
Store each of the valid code arrays into a object �rst
so that it is easier to read
directionCodes = ["l", "r"]
targetCodes = ["a", "b"]

3. Check for coding errors using checkValidCodes(), replacing the lists with your newly-created objects,
and end the script:

require 'Datavyu_API.rb'
begin
directionCodes = ["l", "r"]
targetCodes = ["h", "t"]

Check for typos, replacing the code arrays with your new variables:
checkValidCodes("look", "", "direction", directionCodes, "target", targetCodes)

end

38

Check Code Validity and Output to a File checkValidCodes() can write the results of its
veri�cation to a �dump �le�. Datavyu will create an output �le if you specify a path in the dumpFile
parameter.

1. Create an object that holds the path that it should output to using Ruby's File.expand_path method,
which converts a relative path, like ~/Desktop/�le.txt to an absolute path name, which contains the
root directory, and all sub-directories, like /Users/alice/Desktop/�le.txt

The following commands create a variable called output that holds the absolute path to a �le on the
Desktop called output.txt:

require 'Datavyu_API.rb'
begin

output = File.expand_path("~/Desktop/output.txt")

2. Call checkValidCodes() on the �step� column, passing output as the argument for the dumpFile
parameter:

require 'Datavyu_API.rb'
begin
directionCodes = ["l", "r"]
targetCodes = ["a", "b"]

output = File.expand_path("~/Desktop/output.txt")

Check for errors, specifying the output variable as the dumpFile parameter
checkValidCodes("look", output, "direction", directionCodes, "target", targetCodes)

end

When the script ends, the output.txt �le will be created on the Desktop, containing the results of the
code checking. For the sample data, it should �nd one error, and the output should resemble:

Code ERROR: Var: look Ordinal: 2 Arg: direction Val: rj

Video Example of Checking for Errors This video displays one way to check for errors (typos,
impossible values, etc.) within a spreadsheet.

Check Inter-rater Reliability to Improve Data Accuracy Reliability coding veri�es that the
desired codes are observable and that the coders are accurately interpreting events. With reliability coding,
two coders separately code the same data source. You can create a reliability column, which the second
coder can use to reccord his or her observations. After both coders have coded the same column, they can
compare their codes and determine their inter-rater reliability.

Note: While it may be tempting to have the reliability coder code the data source in a new spreadsheet,
you should endeavor to keep all codes for a given data source in a single spreadsheet. This facilitates analysis
and ensures that like data are kept together. To prevent the reliability coder from seeing the original coding
pass, you can hide the original coded column.

Make a Reliability Column In general, when creating reliability columns you create blank cells that
correspond to the cells created during the �rst coding pass. This ensures that the two coders will have
observed the same events in the data stream and allows easy comparison of the two coding passes.

The Datavyu Ruby API provides the makeReliability() method for creating reliability variables.
makeReliability() has four parameters:

39

http://www.ruby-doc.org/core-1.9.3/File.html#method-c-expand_path

[t]|l|L|L|

Parameter Type Description
relname String or Ruby column from getColumn() the name of the new reliability column you will
create. The convention is to name it rel_columnName, but you can name it whatever you want to.
column_to_copy String The name of the column that we want to create a reliability column from

(i.e. the existing coded column).
multiple_to_keep Integer (optional) Number of cells to skip: a value of 2 includes every other

cell in the new variable; 1 includes every cell, and 0 creates a blank column with no cells
*codes_to_keep comma-separated strings (optional) Codes you want to copy from the original

to new column. These are codes that the reliability coder will not have to code.

Tip: Copying the onset of the original column to the new reliability column in the args_to_keep parameter
makes it easier for the second coder to navigate to the correct locations in the data source, and to code the
same events as the original coder.

When making a reliability column, you should also think about how you are going to compare the columns.
checkReliability(), which you use to check reliability. It requires that each pair of cells has a unique identi�er
that link them together. For example, a trial number coded into each cell would match corresponding cells,
even if only a subset of cells were included in the reliability variable.

The following example uses the sample data to create a new reliability column called �trial_rel� from
its �trial� column, skipping every other cell, and copying over the onset and trialnum codes so that the
reliability coder doesn't have to recode onset and trial numbers.

require 'Datavyu_API.rb'
begin
makeReliability("trial_rel", "trial", 2, "onset", "trialnum")

end

Note: You do not have to write the variable back to the spreadsheet. makeReliability() automatically
writes its results to the spreadsheet.

Check Reliability Once the second coder has recorded their observations in the reliability column, you
can use checkReliability() to compare the primary and reliability columns cells. checkReliability() returns
the number of errors, and the percent agreement.

checkReliability() has four required parameters, and one optional one:

[t]|l|L|L|

Parameter Type Description
main_col String or Ruby variable from getColumn() The primary column that rel_col will be

compared against
rel_col String or Ruby variable from getColumn() The reliability column to compare to main_col
match_arg String The argument used to match the reliability cells to the primary cells. Must be a

unique identi�er between the cells.
time_tolerance Integer Amount of slack permitted, in milliseconds, between the two onset and

o�sets before it will be considered an error. Set to 0 to tolerate no di�erence.
dump_�le String path or Ruby File object (optional) The full string path to dump the reliability
output to. This can be used for multi-�le dumps or just to keep a log. You can also give it a Ruby

File object if a �le is already started.

Note: match_arg is particularly important: for checkReliability() to know which cells to compare, it needs
to have some parameter that is unique to each pair of corresponding primary and reliability cells. In many
cases, the onset time of the cell can be used to match primary and reliability cases.

40

1. Create an object that holds the path that it should output to using Ruby's File.expand_path method,
which converts a relative path, like ~/Desktop/�le.txt to an absolute path name, which contains the
root directory, and all sub-directories, like /Users/alice/Desktop/�le.txt

The following commands create a variable called dump_�le that holds the absolute path to a �le on
the Desktop called relcheck.txt:

require 'Datavyu_API.rb'
begin

dump_�le = File.expand_path("~/Desktop/relCheck.txt")

#. Compare �trial� and �rel_ � using checkReliability(),

with a 5ms time tolerance, and output the results to the dump_�le:

require 'Datavyu_API.rb'
begin
dump_�le = File.expand_path("~/Desktop/relcheck.txt")

Compare the "trial" and "trial_rel" columns, using trialnumber as
their matching code and dump the results to a �le on the desktop.
checkReliability("trial", "trial_rel", "trialnum", 5, dump_�le)

end

Video Example of Checking for Reliability This video displays one way to check for inter-rater
reliability for a single column in a spreadsheet.

Use Scripts to Export Data from Datavyu

Export Methods Datavyu supports numerous data export methods. The Export Data from Datavyu
section of the software guide tutorials demonstrates how to export data to a basic .csv �le using the Export
File function. The Ruby scripting API o�ers users more �exibility in specifying di�erent output �le formats
for exporting data. This section covers two scripting approaches:

� A straight frame-by-frame dump detailing all observations associated with each frame.

� A nested export, which loops through each column and nests cells appropriately.

If you wish to export data from multiple �les, refer to the Batch Operations on Multiple Files tutorial
for guidance on operations that involve multiple �les.

Method : Frame-by-Frame Export A frame-by-frame export prints a row for every video frame in
the spreadsheet and looks across every column and code and writes the values for that frame. This method
is particularly useful for free-form coding projects that contain multiple columns that do not nest in time.
Using a frame-by-frame export makes it easy to import your data into other software packages (e.g., Excel,
SPSS, R).

Datavyu includes a script that performs frame-by-frame export on any �le automatically. By default, the
script �Export Data by Frame� will appear in the �favorites� folder in Datavyu. To test the script, open the
sample spreadsheet in Datavyu. Once the spreadsheet has loaded, select the Script menu and then select
�Favorites/Export Data by Frame.rb�. That's it! The script will output a .csv �le to your desktop called
�framebyframe_export.csv� that contains all of the data from the spreadsheet that can be opened in the
statistical package of your choice.

If you would like to export multiple �les frame-by-frame, there is a script included for that as well
(�Export Data by Frame � Multiple.rb�). Simply create a folder on your desktop called �datavyu_�les� and

41

http://www.ruby-doc.org/core-1.9.3/File.html#method-c-expand_path

place the �les you want to export in that folder. Please note that the �les should contain the same columns
and codes to export correctly.

These scripts will work on a variety of �les and may �t many users' needs. However, if you want to tailor
the scripts for your own purposes (e.g., changing the output �le, input folder, or delimiter), you can �nd the
script �les in your Datavyu installation folder under the �Favorites� folder.

Method : Nested Export A nested export exports data based on the nesting of cells. This is most
useful for spreadsheets whose cells group together. For instance, the following spreadsheet example has
three columns: �id�, �trial�, and �foot�. �id� is a participant ID, which might include codes that describe the
participant's individual id code, gender, age, etc., �trial� is a column that marks each trial that occurred and
�foot� is a column representing observations recorded during each trial.

The cells, then, group together with an �id� cell covering the length of all trials. There are two trials in
the example that occur within the time limits of the �id� cell and there are several �foot� cells that occur
within the time limits of each trial.

To export data from this style of spreadsheet, we will use a series of loops, exporting a row of tab-
separated values for each cell in the �foot� column. Each row will include the �id� and �trial� data that the
�foot� cell nests beside. This spreadsheet has only one �id� cell, since all of the data in that spreadsheet is
for a single participant.

1. Set up the script, and then de�ne where you are going to output the �le to. You need to de�ne the
location of the �le (in this case, the Desktop, de�ned by out_�le), and create a Ruby object to hold
the new �le's data as it outputs it, which we'll call out:

require 'Datavyu_API.rb'

begin

De�nes the location of the �le that we're going to be outputting
the spreadsheet data to - the �le name is DataOutput.txt
and is located on the Desktop.
out_�le = File.expand_path("~/Desktop/DataOutput.txt")

(continues on next page)

42

43

(continued from previous page)

Creates the �le, and assigns write permissions so that the system
can write to it ('w')
out = File.new(out_�le,'w')

2. Retrieve the columns you want to output from the spreadsheet, and assign them to RColumn objects:

require 'Datavyu_API.rb'

begin

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

Retrieve the "id", "trial" and "foot" columns from the spreadsheet
and assign them to RColumn objects

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

3. Set up a series of for loops that we will use to iterate over each cell in the columns we're interested in:

require 'Datavyu_API.rb'

begin

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

Set up a series of nested for loops, following the nesting
of the cells: "id", then "trial", then "foot".
#
This will iterate through every "cell"
in id, every cell in "trial", and every cell in "foot".
#
idcell, tcell, and fcell are temporary Ruby variables
that hold the data for a cell as the cell is iterated over.

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells

4. Write an if clause that checks if cells are nested. In plain English, this if statement checks if the onset
of the foot cell (fcell) occurs after the onset of the trial cell (tcell) and that the o�set of the fcell occurs
before the o�set of the tcell. Or, in even plainer English, that the fcell occurs during the length of the
tcell.

If the clauses are met, write the cells' codes to the out �le, separated by tabs:

44

require 'Datavyu_API.rb'

begin

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells

Set up if statement that checks for cell encapsulation

if lcell.onset >= tcell.onset && lcell.o�set <= tcell.o�set

5. If the if clause is met, write the cells' codes to the out �le, separated by tabs.

As a refresher, cells have a series of codes: onset, o�set, and ordinal by default, as well as any user-
speci�ed codes. To access the codes in one of our temporary Ruby variables (icell, tcell, and fcell), we
use the format cellName.codeName. To access the �idnum� code in the �id� column, then, we'd request
icell.idnum.

Since the script is outputting strings, we also need to convert the onset, o�set, and ordinals from the
integer format to the string format, using to_s.

require 'Datavyu_API.rb'

begin

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells
if fcell.onset >= tcell.onset && fcell.o�set <= tcell.o�set
Write the cells' codes to the output �le, separated by tabs - the "\t"
You must include a newline indicated, "\n" so that the next cells' codes
will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" + tcell.onset.to_s + "\t" +

tcell.o�set.to_s + "\t" + tcell.trial + "\t" +
fcell.ordinal.to_s + "\t" + fcell.onset.to_s + "\t" +
fcell.o�set.to_s + "\t" + fcell.side + "\n")

End the if clause, and the for loops, as well as the script
end

end

(continues on next page)

45

(continued from previous page)

end
end

end

Video Example of Running an Export Script This video displays a user running a script to export
data in a speci�c way. This export script exports all of the columns of one spreadsheet into an Excel �le.
Datavyu's built-in export displays one Excel cell as one cell on the spreadsheet. This speci�c script repeats
all the participant information such as the id number, test date, birthdate, and sex, for all of the data making
it more useful when you import into a statistical analysis program.

Convert an OpenSHAPA Script to the Datavyu Format If you have previously written scripts
for use with OpenSHAPA, you can easily reuse them with Datavyu.

Datavyu's Ruby API was designed to be compatible with the earlier scripting formats. To update scripts
from OpenSHAPA, you simply need to delete the OpenSHAPA API code at the beginning of the �le and
replace it with the following line of code:

require 'Datavyu_API.rb'

And with that, you should be able to run your existing OpenSHAPA scripts through Datavyu.

Batch Operations on Multiple Files Writing scripts that act on multiple �les is largely the same
as writing scripts that act on a single �le: the interactions with columns, codes, and cells are the same.
The scripting API includes commands that can load and save Datavyu spreadsheets. After a spreadsheet
is loaded, the script can execute commands on the spreadsheet (e.g., export data, change or add columns),
then open the next spreadsheet, execute commands, and so on.

This tutorial loads the spreadsheet �les in a folder called data�les that is located on the Desktop, accesses
the �id�, �trial� and �foot� columns, and then sets up a loop to export the data, following the process in Use
Scripts to Export Data from Datavyu.

1. Create the output data �le that you will be exporting the spreadsheet data to:

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

2. Identify the folder that contains the spreadsheets whose data you want to export, and create a list
object called �lenames that lists the �les in that folder:

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

Locate the �les in the data�les folder on the Desktop
and assign the list of �le names to the �lenames Ruby
object.
�ledir = File.expand_path("~/Desktop/data�les/")
�lenames = Dir.new(�ledir).entries

3. Iterate through each �le in �lenames to see if it contains data and is a .opf Datavyu spreadsheet �le. If
so, load the spreadsheet data into Datavyu, and print �SUCCESSFULLY LOADED� when complete:

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')

(continues on next page)

46

(continued from previous page)

�ledir = File.expand_path("~/Desktop/data�les/")
�lenames = Dir.new(�ledir).entries

Iterate through each �lename in the "�lenames" list
for �le in �lenames
if �le.include?(".opf") and �le[0].chr != '.'

puts "LOADING DATABASE: " + �ledir+�le
$db,proj = load_db(�ledir+�le)
puts "SUCCESSFULLY LOADED"

4. Get the columns you are going to export using getColumn():

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')
�ledir = File.expand_path("~/Desktop/data�les/")
�lenames = Dir.new(�ledir).entries

for �le in �lenames
if �le.include?(".opf") and �le[0].chr != '.'

puts "LOADING DATABASE: " + �ledir+�le
$db,proj = load_db(�ledir+�le)
puts "SUCCESSFULLY LOADED"

Retrieve "id", "trial", and "foot" columns

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

5. Set up a series of for loops to iterate over each cell in the relevant columns, and then use an if to
export nested cells, following the steps in Use Scripts to Export Data from Datavyu:

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')
�ledir = File.expand_path("~/Desktop/data�les/")
�lenames = Dir.new(�ledir).entries

for �le in �lenames
if �le.include?(".opf") and �le[0].chr != '.'

puts "LOADING DATABASE: " + �ledir+�le
$db,proj = load_db(�ledir+�le)
puts "SUCCESSFULLY LOADED"

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

Export Data

(continues on next page)

47

(continued from previous page)

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells
if fcell.onset >= tcell.onset && fcell.o�set <= tcell.o�set
Write the cells' codes to the output �le, separated by tabs - the "\t"
You must include a newline indicated, "\n" so that the next cells' codes
will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" + tcell.onset.to_s + "\t" +

tcell.o�set.to_s + "\t" + tcell.trial + "\t" +
fcell.ordinal.to_s + "\t" + fcell.onset.to_s + "\t" +
fcell.o�set.to_s + "\t" + fcell.side + "\n")

End the if clause, and the for loops, as well as the script
end

end
end

end

6. Close the �lename for loop and if statement and print �FINISHED� when the script has �nished
exporting all the spreadsheet �les' data to the output �le:

require 'Datavyu_API.rb'
begin

out_�le = File.expand_path("~/Desktop/DataOutput.txt")
out = File.new(out_�le,'w')
�ledir = File.expand_path("~/Desktop/data�les/")
�lenames = Dir.new(�ledir).entries

for �le in �lenames
if �le.include?(".opf") and �le[0].chr != '.'

puts "LOADING DATABASE: " + �ledir+�le
$db,proj = load_db(�ledir+�le)
puts "SUCCESSFULLY LOADED"

id = getColumn("id")
trial = getColumn("trial")
foot = getColumn("foot")

Export Data

for idcell in id.cells
for tcell in trial.cells
for fcell in foot.cells
if fcell.onset >= tcell.onset && fcell.o�set <= tcell.o�set

Write the cells' codes to the output �le, separated by tabs - the "\t"
You must include a newline indicated, "\n" so that the next cells' codes
will be output on a new line, giving them their own row.
out.write(idcell.idnum + "\t" + tcell.onset.to_s + "\t" +

tcell.o�set.to_s + "\t" + tcell.trial + "\t" +
fcell.ordinal.to_s + "\t" + fcell.onset.to_s + "\t" +

(continues on next page)

48

(continued from previous page)

fcell.o�set.to_s + "\t" + fcell.side + "\n")
End the if clause, and the for loops, as well as the script
end

end
end

end

end
end

puts "FINISHED!"

end

End the script
end

Convert MacSHAPA Files to Work in Datavyu MacSHAPA users can convert their �les to the
new Datavyu format using a script. The following script converts a folder of MacSHAPA �les to Datavyu
�les, but be sure to edit your folders' names and locations to re�ect the location of your MacSHAPA �les
and Datavyu �les.

require 'Datavyu_API.rb'
begin

Edit this to match the directory containing your �les.
macshapa_folder = File.expand_path("~/Desktop/MacSHAPA/")
macshapa_�les = Dir.new(macshapa_folder)

Edit this to match where you want to save the datavyu �les.
datavyu_folder = File.expand_path("~/Desktop/Datavyu/")
if (!File::directory?(datavyu_folder))

Dir.mkdir(datavyu_folder) # Make this dir if it doesn't exist
end

for f in macshapa_�les.each()
Filter out �les we don't want

if (f[0].chr != '.') # Filter out the hidden �les like . and .. and .DSSTORE
puts "Converting " + f
Load the �le and don't draw it to the screen
$db, proj = load_macshapa_db(macshapa_folder + '/' + f, false)
puts "Saving �le " + f + " as Datavyu �le."
save_db(datavyu_folder + '/' + f + ".opf")

end
end

end

2.2.2 Datavyu Ruby API Reference

Version 1.3.4

Classes and Class Methods

49

CTable Class
class CTable

Represent a contingency table / confusion matrix for a single code.

classmethod add(pri_value, rel_value)

Increment the table value at the given combination by one. See computeKappa() for automatically
computing kappa scores.

[t]|l|L|L|
Parameter Type Description

pri_value String Value for primary coder.
rel_value String Value for reliability coder.

Returns

None.

classmethod ef(idx)

Return the expected frequency of agreement by chance for the given index.

[t]|l|L|L|
Parameter Type Description

idx Integer Index of code (starting at zero).

classmethod efs()

Return the sum of the expected frequency of agreement by chance for all indices in table.

classmethod kappa()

Compute kappa using table values.

classmethod total()

Return the sum of all elements in table.

classmethod to_s()

Return formateed string to display the table.

RCell Class
class RCell

The Ruby container for Datavyu cells.

classmethod change_code(code, val)

Changes the value of a code in a cell.

[t]|l|L|L|
Parameter Type Description

arg String or Ruby column from getColumn() Name of the code that you are updating.
val String, Integer, etc. Value to change the code to.

Returns

None.

Example

The following example sets the �trial� column's cell at position 0's onset to 1000ms, and then
writes the change back to the spreadsheet using setColumn().

50

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
trial.cells[0].change_code("onset", 1000)
setColumn("trial", trial)

end

classmethod is_within(outer_cell)

Determines if a cell is temporally encased by the outer_cell.

[t]|l|L|L|
Parameter Type Description

outer_cell The cell that is going to be checked to see if it temporally encases the study cell.

Returns

Boolean

Example

Compare the �rst cell of the �trial� and �id� columns to see if the �rst cell of �trial� is temporally
enclosed by the �rst cell of �id�. If it is, print out �Yes, it is temporally enclosed�, otherwise, print
�No, it is not temporally enclosed.�

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
id = getColumn("id")
if trial.cells[0].is_within(id.cells[0])
puts "Yes, it is temporally enclosed."

else
puts "No, it is not temporally enclosed."

end
end

classmethod contains(inner_cell)

Determines if a cell temporally encases the innter_cell.

[t]|l|L|L|
Parameter Type Description

inner_cell The cell that is going to be checked to see if it is temporally encased by the study cell.

Returns

Boolean

Example

Compare the �rst cell of the �trial� and �id� columns to see if the �rst cell of �trial� is temporally
enclosed by the �rst cell of �id�. If it is, print out �Yes, it is temporally encloses the cell�, otherwise,
print �No, it is does not temporally enclose the cell.�

51

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
id = getColumn("id")
if id.cells[0].is_within(trial.cells[0])
puts "Yes, it is temporally encloses the cell."

else
puts "No, it is does not temporally enclose the cell."

end
end

classmethod print_all(*p)

Dumps all of the codes in a cell to a string .

[t]|l|L|L|
Parameter Type Description

p optional String The separator between codes. Defaults to tab (t)

Returns

String of the codes, starting with ordinal, onset, and o�set, followed by the codes.

Example

The following example prints all of the �trial� column's �rst cell's codes using print.

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
print trial.cells[0].print_all()

end

RColumn Class
class RColumn

The Ruby container for Datavyu columns.

classmethod make_new_cell()

Creates a new blank cell at the end of the column's cell array.

[t]|l|L|L|
Argument Type Description

None

Returns

Reference to the cell that was just created. Modify the cell using this reference.

Example

The following example creates a new cell at the end of the �trial� column's cell array and assigns its
reference to the variable newcell. It then changes newcell's onset to 1000ms using change_code()
and writes the change back to the spreadsheet using setColumn().

52

trial = getColumn("trial")
newcell = trial.make_new_cell()
newcell.change_code("onset", 1000)
setColumn("trial", trial)

classmethod change_code_name(old_name, new_name)

Renames a code.

[t]|l|L|L|
Argument Type Description

old_name String Current name of the code
new_name String New name for the code, which will replace old_name

Returns

Nothing.

Example

The following example renames the �trial� column's bad_code_name code to
awesome_code_name and then writes the changes back to the Datavyu spreadsheet:

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
trial.change_code_name("bad_code_name", "awesome_code_name")
setColumn("trial", trial)

end

classmethod add_code(name)

Adds a code to a column.

[t]|l|L|L|
Argument Type Description

name String The name of the code you are adding to the column

Returns

Nothing.

Example

The following example adds the unit code to the �trial� column and then writes the changes back
to the spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
trial.add_code("unit")
setColumn(trial)

end

53

classmethod remove_code(name)

Deletes a code from a column.

[t]|l|L|L|
Argument Type Description

name String The name of the code you wish to delete from the column

Returns

Nothing.

Freestanding Methods

add_codes_to_column()
add_codes_to_column(column, *codes)

Add new codes to a column.

[t]|l|L|L|

Parameter Type Description
column String or RColumn object Name of the variable that you are adding arguments to.

*codes List List of arguments to add to column. Parameters with an * indicate lists.

Returns

Ruby representation of the column.

Example

The following example adds �code1�, �code2�, and �code3� to the �test� column, and writes it back to
the spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
test = add_codes_to_column("test", "code1", "code2", "code3")
setColumn("test", test)

end

checkReliability()
checkReliability(main_col, rel_col, match_arg, time_tolerance, dump_�le)

Compares two Datavyu columns to check for reliability errors and accuracy.

[t]|l|L|L|

Parameter Type Description
main_col String or Ruby variable from getColumn() The primary column that rel_col will be compared

against
rel_col String or Ruby variable from getColumn() The reliability column to compare to main_col
match_arg String The argument used to match the reliability cells to the primary cells. Must be a

unique identi�er between the cells.
time_tolerance Integer Amount of slack permitted, in milliseconds, between the two onset and o�sets

before it will be considered an error. Set to 0 to tolerate no di�erence.
dump_�le String path or Ruby File object (optional) The full string path to dump the reliability output
to. This can be used for multi-�le dumps or just to keep a log. You can also give it a Ruby File object if a

�le is already started.

54

Returns

Console and �le output.

Example

The following example checks the reliability column �rel_trial� against the primary column �trial�,
linking the two on their �trialnum� code, with a 100ms onset and o�set di�erence tolerated.

checkReliability("trial", "rel_trial", "trialnum", 100)

Example

The following example performs the same operation as the previous example, but also writes the output
to ~/Desktop/Relcheck.txt, a text �le.

checkReliability("trial", "rel_trial", "trialnum", 100, "~/Desktop/Relcheck.txt")

See also:
Check Inter-rater Reliability to Improve Data Accuracy

checkValidCodes()
checkValidCodes(column, dump_�le, *arg_code_pairs)

Checks that all coded values in Datavyu conform to a the list of valid codes for that column.

[t]|l|L|L|

Argument Type Description
column String The Datavyu column that to check

dump_�le String, or Ruby File object Full path of the �le to dump output to. Use �� to write to the
console. You can also specify a Ruby File object.

*arg_code_pairs Key-value pairs List of code names and valid values, in the format �code_name�,
[�valid1�, �valid2�], �code_name2�, [�valid3�, �valid4�], etc.

Returns

Console and/or �le input.

Example

The following example checks the validity of the codes for the �trial� Datavyu column:

check_valid_codes("trial", "", "hand", ["l","r","b","n"], "turn", ["l","r"],
"unit", ["1","2","3"])

See also:
Check for Coding Errors

55

combine_columns()
combine_columns(name, *columnNames)

Combines two column together, creating a new column. create_mutually_exclusive() combines the
two source columns cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns' cells as well as a new cell for each
overlap.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column you wish to create

columnNames List of strings The names of the source column that will be combined

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called �test� from two existing columns, �col1� and �col2�, and
then writes the changes back to the spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
test = combine_columns("test", "col1", "col2")
setColumn("test", test)

end

computeKappa()
computeKappa(pri_col, rel_col, *codes)

Computes Cohen's kappa for a primary and reliability column. Cells between the two columns are
matched by their onset time. Computes a contingency table and kappa score for each speci�ed code.

[t]|l|L|L|

Parameter Type Description
pri_col String or RColumn object Name (or column object) of primary coder's column.
rel_col String or RColumn object Name (or column object) of reliability coder's column.

*codes List Names of codes to compute scores for.

Returns

Hashes (associative arrays) for kappa values and CTable, in that order. Keys are names of the codes.
Values are Numeric, and :class`Ctable`, respectively.

createColumn()
createColumn(name, *codes)

Creates a new blank column with the speci�ed name and codes.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column

codes comma separated Strings Codes that the new column will contain.

56

Note: createColumn() creates the onset, o�set, and ordinal codes by default. You do not need to
specify them in the codes.

Returns

Ruby object representation of the new column in Datavyu.

Example

The following example creates a new Datavyu column called �trial� with the codes �trialnum� and
�unit�, and assigns them to an RColumn object called trial. It then adds a new cell to trial using
make_new_cell() and writes the changes back to the Datavyu spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
trial = createColumn("trial", "trialnum", "unit")
trial.make_new_cell()
setColumn(trial)

end

create_mutually_exclusive()
create_mutually_exclusive(name, col1name, col2name)

Combines two column together, creating a new column.:func:create_mutually_exclusive combines the
two source columns cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns' cells as well as a new cell for each
overlap.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column you wish to create.

col1name String The name of the �rst source column to combine.
col2name String The name of the second source column to combine.

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called �test� from two existing columns, �col1� and �col2�, and
then writes the changes back to the spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
test = create_mutually_exclusive("test", "col1", "col2")
setColumn("test", test)

end

57

deleteCell()
deleteCell(cell)

Removes the speci�ed cell from its column and propagates the changes to the spreadsheet.

[t]|l|L|L|

Parameter Type Description
cell RCell Ruby representation of the Datavyu cell to be deleted.

Returns

Unde�ned.

Example

Removes cells from the �trial� column with �condition� coded as �a�.

First get the column from the database
trial = getVariable("trial")

Now loop through all of the cells in that column, checking if
they are coded as a left hand.
for trial_cell in trial.cells
Is hand coded as "l" for this cell?
if trial_cell.condition == 'a'
deleteCell(cell)

end
end

deleteVariable()
deleteVariable(column)

Deletes a column from the spreadsheet.

Alias(es): delete_column

[t]|l|L|L|

Parameter Type Description
column String or RColumn object Name of the variable that you are adding arguments to.

Returns

Nothing.

Example

The following example removes column `trials' from the spreadsheet.

require 'Datavyu_API.rb'
begin
deleteVariable('trials')

end

58

getCellFromTime()
getCellFromTime(col, time)

Identi�es the cell that occurs at a given point in time for the speci�ed column, and returns it.

[t]|l|L|L|

Parameter Type Description
col String or RColumn object Name or Ruby representation of the column that you are looking for a cell

within.
time Integer Time (in milliseconds) that you want to identify the cell that happens then.

Returns

Returns the Ruby representation of the cell at the speci�ed point in time. If there is no cell at that
point in time, Ruby does not return anything.

Example

The following example identi�es the cell that occurs at 100ms in the �trial� column, and assigns it to
a RCell object. It then prints out the cell's ordinal, onset, and o�set codes for easy location.

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
cell = getCellFromTime(trial, 100)

Get the ordinal, onset, o�set
values from the cell, and assign them to
string variables, so we can print them out
ordinal = cell.ordinal.to_s
onset = cell.onset.to_s
o�set = cell.o�set.to_s

Print out ordinal, onset, and o�set, and their values
puts "ordinal: #{ordinal}"
puts "onset: #{onset}ms"
puts "o�set: #{o�set}ms"

end

getColumn()
getColumn(name)

Retrieves a variable from the Datavyu spreadsheet and assigns it to a Ruby object using print_debug().

[t]|l|L|L|

Parameter Type Description
name String The name of the Datavyu column you wish to retrieve

Returns

A Ruby object representation of the Datavyu column.

Example

59

The following example retrieves the Datavyu column �trial� and assigns it to a Ruby variable called
trial.

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")

end

getColumnList()
getColumnList()

Outputs a list of all the columns in the current spreadsheet.

[t]|l|L|L|

Parameter Type Description
None

Returns

List of columns.

Example

The following example assigns the list of columns to a Ruby object called, columnList and prints it
out using puts.

require 'Datavyu_API.rb'
begin
columnList = getColumnList()
puts columnList

end

load_db()
load_db(�lename)

Loads a spreadsheet's data directly from the �le.

[t]|l|L|L|

Parameter Type Description
�lename String The full path to the saved Datavyu �le.

Returns

� $db: the spreadsheet of the opened project

� $pj: project data of the opened project

Example

The following example loads the test.opf spreadsheet located on the Desktop.

60

require 'Datavyu_API.rb'
begin
$db,$pj = load_db("~/Desktop/test.opf")

end

load_macshapa_db()
load_macshapa_db(�lename, write_to_gui, *ignore_vars)

Opens an old, closed MacSHAPA spreadsheet �le and loads it into the current open spreadsheet.

Warning: load_macshapa_db() only reads in matrix and string columns. It does not yet support
predicates, and queries are not imported. In order to be compatible with Datavyu, all times will
be converted to milliseconds.

[t]|l|l|L|

Parameter Type Description
�lename String The full path to save the saved MacSHAPA �le.

write_to_gui Boolean If true, the MacSHAPA �le is read into the spreadsheet that is currently open in
Datavyu's GUI. If false, the MacSHAPA �le is read into the Ruby interface.

Returns

$db, the spreadsheet data and $pj, the project data for that �le.

Example

The following example loads the test.opf MacSHAPA �le and into ruby variables called $db and $pj.

require 'Datavyu_API.rb'
begin
$db,$pj = load_db("~/Desktop/test.opf", FALSE)

end

Example

In this example, the test.opf MacSHAPA �le is read into the spreadsheet that is currently open in
Datavyu's GUI.

require 'Datavyu_API.rb'
begin
$db, $pj = load_db("~/Desktop/test.opf", TRUE)

end

makeDurationBlockRel()
makeDurationBlockRel(relname, var_to_copy, binding, block_dur, skip_blocks)

Makes a duration-based reliability column. This creates two columns, one containing a cell with a
number for that block, and another blank column for the free coding within the block.

[t]|l|L|L|

61

Parameter Type Description
relname String The name of the reliability column you are creating

var_to_copy RColumn object Name of the column which you are copying, i.e.the existing column that
you are creating a reliability column from.

binding String Column to bind the copy to.
block_dur Integer Length the blocks should be (in seconds)

skip_blocks Integer Determines the amount of space that should be left between each coding block.
skip_blocks is an Integer. Each skipped block is the length speci�ed by block_dur. If block_dur is 10

seconds, and skip_blocks is 5, then 50 seconds will be left between each coding block.

Returns

Nothing. Columns are automatically written to the spreadsheet.

Example

The following example creates a duration-based reliability column from the �step� column.

require 'Datavyu_API.rb'

makeReliability()
makeReliability(relname, column_to_copy, multiple_to_keep, *codes_to_keep)

Creates a reliability column that is a copy of another Datavyu column in the Database.
makeReliability() can copy the cells (or a subsection of the cells) and retain codes from the origin
column if desired.

[t]|l|L|L|

Parameter Type Description
relname String or Ruby column from getColumn() the name of the new reliability column you will
create. The convention is to name it rel_columnName, but you can name it whatever you want to.

column_to_copy String The name of the column that we want to create a reliability column from (i.e.
the existing coded column).

multiple_to_keep Integer (optional) Number of cells to skip: a value of 2 includes every other cell in
the new variable; 1 includes every cell, and 0 creates a blank column with no cells

*codes_to_keep comma-separated strings (optional) Codes you want to copy from the original to new
column. These are codes that the reliability coder will not have to code.

Returns

A Ruby object representation of the reliability column within Datavyu.

Example

The following example creates the reliability column �rel_trial� from the primary column �trial�,
copying every second cell, and retaining the �onset�, �trialnum� and �unit� codes, and then writes
the new �rel_trial� column back to the spreadsheet.

require 'Datavyu_API.rb'
begin
rel_trial = makeReliability("rel_trial", "trial", 2, "onset", "trialnum", "unit")
setVariable("rel_trial", rel_trial)

end

62

See also:

� Check Inter-rater Reliability to Improve Data Accuracy

printAllNested()
printAllNested()

[t]|l|L|L|

Parameter Type Description
�le String Path to the Datavyu spreadsheet �le whose data you want to print

Returns

[stu� it returns]

Example

[example]

printCellCodes()
printCellCodes(cell)

Prints out the values for every code in a speci�ed cell.

[t]|l|L|L|

Parameter Type Description
cell RCell object The cell whose codes you are printing out.

Returns

An object listing all of the codes in a given cell.

Example

The following example uses puts to print out the codes for the �rst cell in the �trial� column, accessed
using printCellCodes().

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
cell = trial.cell[0]

puts printCellCodes(cell)
end

print_codes()
print_codes(cell, �le, codes)

Writes a cell's codes to a �le, separated by tab (\t).

[t]|l|L|L|

Parameter Type Description
cell RCell object Cell whose codes you want to write to a �le.

�le String Path to the �le that you wish to write the cell's codes to.

63

codes Array of Strings Codes whose coded values you wish to print.

Returns

Nothing. Writes results to the speci�ed �le.

Example

The following example uses print_codes() to write the coded values for the cells in the �trial� variable
to a �le called �trial_codes.txt�, located on the Desktop.

require 'Datavyu_API.rb'

begin
De�nes the location of the �le that we're going to be outputting
the column data to - the �le name is baby_codes.txt
and is located on the Desktop.
out_�le = File.expand_path("~/Desktop/baby_codes.txt")

Creates the �le, and assigns write permissions 'w'

out = File.new(out_�le,'w')

Retrieves the "BabyLocation" column from the spreadsheet
baby = getColumn("BabyLocation")

De�ne which codes we want to print out
codes_to_print = ["ordinal", "onset", "o�set", "arg01"]

Iterate through every cell in the BabyLocation column to
print its coded values.
for cell in baby.cells
Write the ordinal, onset, o�set, and code01 codes to the baby_codes.txt �le,
which is accessed by the variable called out
print_codes(cell, out, codes_to_print)

Write a newline to the �le so that the values for each cell
will be in their own row
out.write("\n")

end
end

save_db()
save_db(�lename)

Saves the current $db and $pj variables to a �le. If the �lename ends with .csv, save_db() saves the
data as a .csv �le. Otherwise, it saves it as .opf.

[t]|l|L|L|

Parameter Type Description
�lename String or Ruby object The full path to save the Datavyu �le to

Returns

64

Nothing.

Example

The following example saves the current spreadsheet open in the GUI to a �le called test.opf that is
located on the Desktop.

require 'Datavyu_API.rb'
begin
save_db("~/Desktop/test.opf")

end

setColumn()
setColumn(name, var)

setColumn() writes columns to the spreadsheet: for columns that already exist, setColumn() replaces
the data in the spreadsheet with the version updated using the script. For instance, if you were to
retrieve the �trial� column from a spreadsheet and then make some changes, you would use setColumn()
to write those changes to the spreadsheet, replacing the old data with your new data.

If the column does not already exist in the spreadsheet (for instance, if you create a new column using
makeNewColumn()), setColumn() will instead create a new column in the spreadsheet.

[t]|l|L|L|

Parameter Type Description
name String (optional) Name of the column that you are inserting

column RColumn object (required) Ruby container of the column that you are inserting into the
spreadsheet (modi�ed output of createNewColumn() or getColumn())

Important: You must specify a value for the column parameter. If you are also passing a value for
the name parameter, the order of arguments must be name followed by column.

Returns

None

Example

The following example retrieves the Datavyu column �trial� and assigns it to a Ruby variable called
trial. After some modi�cations to the trial object, it writes those changes back to the spreadsheet
using setColumn().

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
<some modi�cations to trial>
setColumn("trial", trial)

end

smoothColumn()

65

smoothColumn(colname, tol=33)

Tweaks cell onsets so that there is a maximum of tol milliseconds between each cell. If two cells are
less than tol apart, it moves on to the next pair of cells; if there is a larger gap than tol, the second
cell's onset is set to the �rst cell's o�set .

[t]|l|L|L|

Parameter Type Description
colname String Name of the column that you wish to modify.

tol Integer The tolerance you are willing to accept between a cell's o�set and the next cell's onset. By
default, this is 33ms.

Returns

Nothing. In addition, smoothColumn() automatically writes its changes back to the spreadsheet, so
you do not need to write the changes using setColumn().

Example

The following example checks the �trial� column's cells to ensure that a maximum of 50ms between a
cell's o�set and the subsequent cell's onset .

require 'Datavyu_API.rb'
begin
smoothColumn("trial", 50)

end

transfer_columns
transfer_columns(db1, db2, remove, *varnames)

Transfers columns between spreadsheets. If db1 or db2 is set to the empty string ��, then that
spreadsheet is spreadsheet open in the GUI.

Thus, if you want to transfer a column into the GUI, set db2 to ��, and specify the origin spreadsheet
�le as db1. If you want to transfer a column from the GUI into a �le, set db1 to ��, and set db2 to
that �le's path.

Warning: Setting remove to TRUE will DELETE THE COLUMNS YOU ARE
TRANSFERRING FROM DB1.

[t]|l|L|L|

Parameter Type Description
db1 String The full path to save the �rst Datavyu �le. Set to �� to use the spreadsheet that's currently

open.
db2 String The full path to save the second Datavyu �le. Set to �� to use the spreadsheet that's

currently open.
remove Boolean If TRUE, Datavyu will delete the columns from db1 as they are copied to db2. FALSE

leaves the columns intact.
varnames list of strings List of the names of the columns that you wish to copy from db1 to db1. You

must specify at least one column name.

Returns

Nothing. Saves �les in place or modi�es the GUI.

66

Example

The following example transfers the column �idchange� from test.opf to the GUI and leaves test.opf
intact and unmodi�ed.

Transfer column(s) from one opf to another.
Set sourceFile and destinationFile to the full path;
Leave blank to indicate currently open �le.
This will work for as many columns as you like.

require 'Datavyu_API.rb'

class RVariable

De�ne a way to construct a new cell by cloning a given cell.
Not for general purpose use as vocabulary can become corrupt if used improperly
def make_new_cell2(cell)

c = RCell.new
c.onset = cell.onset
c.o�set = cell.o�set
c.ordinal = cell.ordinal
c.set_args(cell.argvals,@arglist)
c.parent = @name
@cells << c
return c

end
end

def transferMyVariable(db1,db2,delete,*varnames)
If varnames was speci�ed as a hash, �atten it to an array
varnames.�atten!

$debug=true

Display args when debugging
if $debug

puts "="*20
puts "#{__method__} called with following args:"
puts db1,db2,delete,varnames
puts "="*20

end

Handle degenerate case of same source and destination
if db1==db2

puts "Warning: source and destination are identical. No changes made."
return nil

end

Set the source database, loading from �le if necessary.
Raises �le not found error and returns nil if source database does not exist.
db1path = ""
begin

if db1!=""

(continues on next page)

67

(continued from previous page)

db1path = File.expand_path(db1)
if !File.readable?(db1path)

raise "Error! File not readable : #{db1}"
end
puts "Loading source database from �le : #{db1path}" if $debug
from_db,from_proj = loadDB(db1path)

else
from_db,from_proj = $db,$proj

end
rescue StandardError => e

puts e.message
puts e.backtrace
return nil

end

Set the destination database, loading from �le if necessary.
Raises �le not found error and returns nil if destination database does not exist.
db2path = ""
begin

if db2!=""
db2path = File.expand_path(db2)
if !File.writable?(db2path)

raise "Error! File not writable : #{db2}"
end
puts "Loading destination database from �le : #{db2path}" if $debug
to_db,to_proj = loadDB(db2path)
#$db,$proj = loadDB(db2path)

else
to_db,to_proj = $db,$proj

end
rescue StandardError => e

puts e.message
puts e.backtrace
return nil

end

Set working database to source database to prepare for reading
$db,$pj = from_db,from_proj

Construct a hash to store columns and cells we are transferring
puts "Fetching columns..." if $debug
begin

col_map = Hash.new
cell_map = Hash.new
for col in varnames

c = getColumn(col.to_s)
if c.nil?

puts "Warning: column #{c} not found! Skipping..."
next

end
col_map[col] = c
cell_map[col] = c.cells

(continues on next page)

68

(continued from previous page)

puts "Read column : #{col.to_s}" if $debug
end

end

Set working database to destination database to prepare for writing
$db,$pj = to_db,to_proj

Go through the hashmaps and reconstruct the columns
begin

for key in col_map.keys
col = col_map[key]
cells = cell_map[key]
arglist = col.arglist

Construct a new variable and add all associated cells
newvar = createVariable(key.to_s,arglist)
for c in cells

newvar.make_new_cell2(c)
end
setVariable(key.to_s,newvar)
if $debug

puts "Wrote column : #{key.to_s} with #{newvar.cells.length} cells"
end

end
rescue StandardError => e

puts "Failed trying to write column #{col}"
puts e.message
puts e.backtrace
return nil

end

Finally, save the database to �le if applicable
saveDB(db2path) if db2path!=""

end

begin
$debug=false
sourceFile="/Users/datavyutester/Desktop/FileName1.opf"
destinationFile="/Users/datavyutester/Desktop/FileName2.opf"
columnsToTransfer = ["reltrial"]
transferMyVariable(sourceFile, destinationFile, false, columnsToTransfer)

end

See also:
The Glossary

Version 1.3.6

Classes and Class Methods

CTable Class
class CTable

69

Represent a contingency table / confusion matrix for a single code.

classmethod add(pri_value, rel_value)

Increment the table value at the given combination by one. See compute_kappa() for
automatically computing kappa scores.

[t]|l|L|L|
Parameter Type Description

pri_value String Value for primary coder.
rel_value String Value for reliability coder.

Returns

None.

classmethod ef(idx)

Return the expected frequency of agreement by chance for the given index.

[t]|l|L|L|
Parameter Type Description

idx Integer Index of code (starting at zero).

classmethod efs()

Return the sum of the expected frequency of agreement by chance for all indices in table.

classmethod kappa()

Compute kappa using table values.

classmethod total()

Return the sum of all elements in table.

classmethod to_s()

Return formateed string to display the table.

RCell Class
class RCell

The Ruby container for Datavyu cells.

classmethod change_code(code, val)

Changes the value of a code in a cell.

[t]|l|L|L|
Parameter Type Description

arg String or Ruby column from get_column() Name of the code that you are updating.
val String, Integer, etc. Value to change the code to.

Returns

None.

Example

The following example sets the �trial� column's cell at position 0's onset to 1000ms and then
writes the change back to the spreadsheet using set_column().

70

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
trial.cells[0].change_code("onset", 1000)
setColumn("trial", trial)

end

classmethod is_within(outer_cell)

Determines if a cell is temporally encased by the outer_cell.

[t]|l|L|L|
Parameter Type Description

outer_cell The cell that is going to be checked to see if it temporally encases the study cell.

Returns

Boolean

Example

Compare the �rst cell of the �trial� and �id� columns to see if the �rst cell of �trial� is temporally
enclosed by the �rst cell of �id�. If it is, print out �Yes, it is temporally enclosed�, otherwise, print
�No, it is not temporally enclosed.�

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
id = getColumn("id")
if trial.cells[0].is_within(id.cells[0])
puts "Yes, it is temporally enclosed."

else
puts "No, it is not temporally enclosed."

end
end

classmethod contains(inner_cell)

Determines if a cell temporally encases the inner_cell.

[t]|l|L|L|
Parameter Type Description

inner_cell The cell that is going to be checked to see if it is temporally encased by the study cell.

Returns

Boolean

Example

Compare the �rst cell of the �trial� and �id� columns to see if the �rst cell of �trial� is temporally
enclosed by the �rst cell of �id�. If it is, print out �Yes, it is temporally encloses the cell�, otherwise,
print �No, it is does not temporally enclose the cell.�

71

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
id = getColumn("id")
if id.cells[0].is_within(trial.cells[0])
puts "Yes, it is temporally encloses the cell."

else
puts "No, it is does not temporally enclose the cell."

end
end

classmethod print_all(*p)

Dumps all of the codes in a cell to a string .

[t]|l|L|L|
Parameter Type Description

p optional String The separator between codes. Defaults to tab (t)

Returns

String of the codes, starting with ordinal, onset, and o�set, followed by the codes.

Example

The following example prints all of the �trial� column's �rst cell's codes using print.

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
print trial.cells[0].print_all()

end

RColumn Class
class RColumn

The Ruby container for Datavyu columns.

classmethod make_new_cell()

Creates a new blank cell at the end of the column's cell array.

[t]|l|L|L|
Argument Type Description

None

Returns

Reference to the cell that was just created. Modify the cell using this reference.

Example

The following example creates a new cell at the end of the �trial� column's cell array and assigns its
reference to the variable newcell. It then changes newcell's onset to 1000ms using change_code()
and writes the change back to the spreadsheet using set_column().

72

trial = get_column("trial")
newcell = trial.make_new_cell()
newcell.change_code("onset", 1000)
set_column("trial", trial)

classmethod change_code_name(old_name, new_name)

Renames a code.

[t]|l|L|L|
Argument Type Description

old_name String Current name of the code
new_name String New name for the code, which will replace old_name

Returns

Nothing.

Example

The following example renames the �trial� column's bad_code_name code to
awesome_code_name and then writes the changes back to the Datavyu spreadsheet:

require 'Datavyu_API.rb'
begin
trial = get_column("trial")
trial.change_code_name("bad_code_name", "awesome_code_name")
set_column("trial", trial)

end

classmethod add_code(name)

Adds a code to a column.

[t]|l|L|L|
Argument Type Description

name String The name of the code you are adding to the column

Returns

Nothing.

Example

The following example adds the unit code to the �trial� column and then writes the changes back
to the spreadsheet using set_column().

require 'Datavyu_API.rb'
begin
trial = get_column("trial")
trial.add_code("unit")
set_column(trial)

end

73

classmethod remove_code(name)

Deletes a code from a column.

[t]|l|L|L|
Argument Type Description

name String The name of the code you wish to delete from the column

Returns

Nothing.

Example

The following example removes the unit code from the �trial� column and then writes the changes
back to the spreadsheet using set_column().

require 'Datavyu_API.rb'
begin
trial = get_column("trial")
trial.remove_code("unit")
set_column(trial)

end

Freestanding Methods

add_codes_to_column()
add_codes_to_column(column, *codes)

Alias(es): addCodesToColumn, add_args_to_var

Add new codes to a column.

[t]|l|L|L|

Parameter Type Description
column String or RColumn object Name of the variable that you are adding arguments to.

*codes List List of arguments to add to column. Parameters with an * indicate lists.

Returns

Ruby representation of the column.

Example

The following example adds �condition_abc�, �response_xyz�, and �score_123� to the �test� column,
and writes it back to the spreadsheet using set_column().

require 'Datavyu_API.rb'
begin
test = add_codes_to_column("test", "condition_abc", "response_xyz", "score_123")
setColumn(test)

end

74

check_datavyu_version()
check_datavyu_version(minVersion, maxVersion)

Checks whether the current version of Datavyu meets the minimum and maximum requirements
speci�ed in the parameters.

Requires Datavyu 1.3.5 or greater.

[t]|l|L|L|

Parameter Type Description
minVersion String Minimum version to check against; e.g. `v:1.3.5'
maxVersion String (optional) Maximum version to check against.

Returns

True if the current Datavyu version meets the speci�ed requirements; false otherwise.

Example

Raise an error message unless the script is run on Datavyu version 1.3.5 or greater.

raise "This script will not work on the current version of Datavyu" if not check_datavyu_version(
↪→'v:1.3.5')

check_reliability()
check_reliability(main_col, rel_col, match_arg, time_tolerance, dump_�le)

Compares two Datavyu columns to check for reliability errors and accuracy.

[t]|l|L|L|

Parameter Type Description
main_col String or Ruby variable from getColumn() The primary column that rel_col will be compared

against
rel_col String or Ruby variable from getColumn() The reliability column to compare to main_col
match_arg String The argument used to match the reliability cells to the primary cells. Must be a

unique identi�er between the cells.
time_tolerance Integer Amount of slack permitted, in milliseconds, between the two onset and o�sets

before it will be considered an error. Set to 0 to tolerate no di�erence.
dump_�le String path or Ruby File object (optional) The full string path to dump the reliability output
to. This can be used for multi-�le dumps or just to keep a log. You can also give it a Ruby File object if a

�le is already started.

Returns

Console and �le output.

Example

The following example checks the reliability column �rel_trial� against the primary column �trial�,
linking the two on their �trialnum� code, with a 100ms onset and o�set di�erence tolerated.

check_reliability("trial", "rel_trial", "trialnum", 100)

Example

75

The following example performs the same operation as the previous example, but also writes the output
to ~/Desktop/Relcheck.txt, a text �le.

check_reliability("trial", "rel_trial", "trialnum", 100, "~/Desktop/Relcheck.txt")

See also:
Check Inter-rater Reliability to Improve Data Accuracy

check_valid_codes()
check_valid_codes(column, dump_�le, *arg_code_pairs)

Alias(es): checkValidCodes

Checks that all coded values in Datavyu conform to a the list of valid codes for that column.

[t]|l|L|L|

Argument Type Description
column String The Datavyu column that to check

dump_�le String, or Ruby File object Full path of the �le to dump output to. Use �� to write to the
console. You can also specify a Ruby File object.

*arg_code_pairs Key-value pairs List of code names and valid values, in the format �code_name�,
[�valid1�, �valid2�], �code_name2�, [�valid3�, �valid4�], etc.

Returns

Nothing. Generated messages are output to console and/or �le.

Example

The following example checks the validity of the codes for the �trial� Datavyu column:

check_valid_codes("trial", "", "hand", ["l","r","b","n"], "turn", ["l","r"],
"unit", ["1","2","3"])

See also:
Check for Coding Errors

check_valid_codes2()
check_valid_codes2(data, dump_�le, *arg_code_pairs)

Advanced version of check_valid_codes(), available in Datavyu version 1.3.5 and higher.

Can check codes using patterns and can operate over multiple columns. Backwards-compatible with
check_valid_codes() so this function should be able to replace calls to check_valid_codes().

[t]|l|L|L|

Argument Type Description
data String, RVariable, or Hash When this parameter is a String or a column object from getVariable(),
the function operates on codes within this column. If the parameter is a Hash (associative array), the
function ignores the arg_code_pairs arguments and uses data from this Hash. The Hash must be

structured as a nested mapping from columns (either as Strings or RVariables) to Hashes. These nested
hashes must be mappings from code names (as Strings) to valid code values (as either lists (Arrays) or

patterns (Regexp)).
dump_�le String, or Ruby File object Path of the �le to dump output to. Use empty String (i.e. ��) to

write to the console. You can also specify a Ruby File object (e.g. from File.open()).
*arg_code_pairs Key-value pairs List of code names and valid values, in the format �code_name�,
[�valid1�, �valid2�], �code_name2�, [�valid3�, �valid4�], etc. This is ignored if �rst argument is a Hash.

76

Returns

Nothing. Generated messages are output to console and/or �le.

Example

The following example checks three columns for valid code values. Before the call to the function, a
nested mapping is created for each column. The inner map is a mapping from the names of codes to
their valid values.

Params
date_format = /\A\d{2}\/\d{2}\/\d{4}\Z/ # dates must be formatted: ##/##/####
Associative mapping from column names to mappings from code names to valid values
map = {
'id' => {
'testdate' => date_format,
'idnum' => /\A\d{3}\Z/, # id number must be exactly 3 digits
'gender' => ['m', 'f', '.'], # gender can be one of 3 values
'birthdate' => date_format

},
'condition' => {
'cond_ab' => ['a', 'b'] # condition can be either 'a' or 'b'

},
'trial' => {
'trialnum' => /\A\d+\Z/, # trial number must be one or more digits
'result_xyz' => ['x', 'y', 'z'] # result must be one of 3 values

}
}

Body
check_valid_codes2(map, '~/Desktop/check.txt')

See also:
Check for Coding Errors

combine_columns()
combine_columns(name, *columnNames)

Combines two columns together, creating a new column. create_mutually_exclusive() combines the
two source columns' cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns' cells as well as a new cell for each
overlap.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column you wish to create

columnNames List of strings The names of the source column that will be combined

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

77

The following example creates a column called �test� from two existing columns, �col1� and �col2�, and
then writes the changes back to the spreadsheet using set_column().

require 'Datavyu_API.rb'
begin
test = combine_columns("test", "col1", "col2")
setColumn("test", test)

end

compute_kappa()
compute_kappa(pri_col, rel_col, *codes)

Computes Cohen's kappa for a primary and reliability column. Cells between the two columns are
matched by their onset time. Computes a contingency table and kappa score for each speci�ed code.

[t]|l|L|L|

Parameter Type Description
pri_col String or RColumn object Name (or column object) of primary coder's column.
rel_col String or RColumn object Name (or column object) of reliability coder's column.

*codes List Names of codes to compute scores for.

Returns

Hashes (associative arrays) for kappa values and CTable, in that order. Keys are names of the codes.
Values are Numeric, and :class`Ctable`, respectively.

create_mutually_exclusive()
create_mutually_exclusive(name, col1name, col2name)

Combines two columns together, creating a new column. create_mutually_exclusive() combines the
two source columns' cells together so that the new column includes all of the arguments from both
source columns. It also includes a combination of the two columns' cells as well as a new cell for each
overlap.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column you wish to create.

col1name String The name of the �rst source column to combine.
col2name String The name of the second source column to combine.

Returns

The new Ruby representation of the column. You must write the changes back to the spreadsheet if
you want to save them.

Example

The following example creates a column called �test� from two existing columns, �col1� and �col2�, and
then writes the changes back to the spreadsheet using setColumn().

require 'Datavyu_API.rb'
begin
test = create_mutually_exclusive("test", "col1", "col2")
setColumn("test", test)

end

78

delete_cell()
delete_cell(cell)

Removes the speci�ed cell from its column and propagates the changes to the spreadsheet.

[t]|l|L|L|

Parameter Type Description
cell RCell Ruby representation of the Datavyu cell to be deleted.

Returns

Unde�ned.

Example

Removes cells from the �trial� column with �condition� coded as �a�.

First get the column from the database
trial = get_column("trial")

Now loop through all of the cells in that column, checking if
they are coded as a left hand.
for trial_cell in trial.cells
Is hand coded as "l" for this cell?
if trial_cell.condition == 'a'
delete_cell(cell)

end
end

delete_variable()
delete_variable(column)

Deletes a column from the spreadsheet.

Alias(es): delete_column

[t]|l|L|L|

Parameter Type Description
column String or RColumn object Name of the variable that you are adding arguments to.

Returns

Nothing.

Example

The following example removes column `trials' from the spreadsheet.

require 'Datavyu_API.rb'
begin
delete_variable('trials')

end

79

get_cell_from_time()
get_cell_from_time(col, time)

Identi�es the cell that occurs at a given point in time for the speci�ed column, and returns it.

[t]|l|L|L|

Parameter Type Description
col String or RColumn object Name or Ruby representation of the column that you are looking for a cell

within.
time Integer Time (in milliseconds) that you want to identify the cell that happens then.

Returns

Returns the Ruby representation of the cell at the speci�ed point in time. If there is no cell at that
point in time, Ruby does not return anything.

Example

The following example identi�es the cell that occurs at 100ms in the �trial� column, and assigns it to
a RCell object. It then prints out the cell's ordinal, onset, and o�set codes for easy location.

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
cell = get_cell_from_time(trial, 100)

Get the ordinal, onset, o�set
values from the cell, and assign them to
string variables, so we can print them out
ordinal = cell.ordinal.to_s
onset = cell.onset.to_s
o�set = cell.o�set.to_s

Print out ordinal, onset, and o�set, and their values
puts "ordinal: #{ordinal}"
puts "onset: #{onset}ms"
puts "o�set: #{o�set}ms"

end

get_column()
get_column(name)

Retrieves a variable from the Datavyu spreadsheet and assigns it to a Ruby object using print_debug().

[t]|l|L|L|

Parameter Type Description
name String The name of the Datavyu column you wish to retrieve

Returns

A Ruby object representation of the Datavyu column.

Example

80

The following example retrieves the Datavyu column �trial� and assigns it to a Ruby variable called
trial.

require 'Datavyu_API.rb'
begin
trial = get_column("trial")

end

get_column_list()
get_column_list()

Outputs a list of all the columns in the current spreadsheet.

[t]|l|L|L|

Parameter Type Description
None

Returns

List of columns.

Example

The following example assigns the list of columns to a Ruby object called, columnList and prints it
out using puts.

require 'Datavyu_API.rb'
begin
columnList = get_column_list()
puts columnList

end

get_datavyu_version()
get_datavyu_version()

Return the current Datavyu version as a String (e.g. `v:1.3.5')

Requires Datavyu 1.3.5 or greater.

Returns

String.

load_db()
load_db(�lename)

Loads a spreadsheet's data directly from the �le.

[t]|l|L|L|

Parameter Type Description
�lename String The full path to the saved Datavyu �le.

Returns

81

� $db: the spreadsheet of the opened project

� $pj: project data of the opened project

Example

The following example loads the test.opf spreadsheet located on the Desktop.

require 'Datavyu_API.rb'
begin
$db,$pj = load_db("~/Desktop/test.opf")

end

load_macshapa_db()
load_macshapa_db(�lename, write_to_gui, *ignore_vars)

Opens an old, closed MacSHAPA spreadsheet �le and loads it into the current open spreadsheet.

Warning: load_macshapa_db() only reads in matrix and string columns. It does not yet support
predicates, and queries are not imported. In order to be compatible with Datavyu, all times will
be converted to milliseconds.

[t]|l|l|L|

Parameter Type Description
�lename String The full path to save the saved MacSHAPA �le.

write_to_gui Boolean If true, the MacSHAPA �le is read into the spreadsheet that is currently open in
Datavyu's GUI. If false, the MacSHAPA �le is read into the Ruby interface.

Returns

$db, the spreadsheet data and $pj, the project data for that �le.

Example

The following example loads the test.opf MacSHAPA �le and into ruby variables called $db and $pj.

require 'Datavyu_API.rb'
begin
$db,$pj = load_db("~/Desktop/test.opf", FALSE)

end

Example

In this example, the test.opf MacSHAPA �le is read into the spreadsheet that is currently open in
Datavyu's GUI.

require 'Datavyu_API.rb'
begin
$db, $pj = load_db("~/Desktop/test.opf", TRUE)

end

82

make_duration_block_rel()
make_duration_block_rel(relname, var_to_copy, binding, block_dur, skip_blocks)

Makes a duration-based reliability column. This creates two columns, one containing a cell with a
number for that block, and another blank column for the free coding within the block.

[t]|l|L|L|

Parameter Type Description
relname String The name of the reliability column you are creating

var_to_copy RColumn object Name of the column which you are copying, i.e. the existing column that
you are creating a reliability column from.

binding String Column to bind the copy to.
block_dur Integer Length the blocks should be (in seconds)

skip_blocks Integer Determines the amount of space that should be left between each coding block.
skip_blocks is an Integer. Each skipped block is the length speci�ed by block_dur. If block_dur is 10

seconds, and skip_blocks is 5, then 50 seconds will be left between each coding block.

Returns

Nothing. Columns are automatically written to the spreadsheet.

Example

The following example creates a duration-based reliability column from the �step� column.

require 'Datavyu_API.rb'

make_reliability()
make_reliability(relname, column_to_copy, multiple_to_keep, *codes_to_keep)

Creates a reliability column that is a copy of another Datavyu column in the Database.
make_reliability() can copy the cells (or a subsection of the cells) and retain codes from the origin
column if desired.

[t]|l|L|L|

Parameter Type Description
relname String or Ruby column from getColumn() the name of the new reliability column you will
create. The convention is to name it rel_columnName, but you can name it whatever you want to.

column_to_copy String The name of the column that we want to create a reliability column from (i.e.
the existing coded column).

multiple_to_keep Integer (optional) Number of cells to skip: a value of 2 includes every other cell in
the new variable; 1 includes every cell, and 0 creates a blank column with no cells

*codes_to_keep comma-separated strings (optional) Codes you want to copy from the original to new
column. These are codes that the reliability coder will not have to code.

Returns

A Ruby object representation of the reliability column within Datavyu.

Example

The following example creates the reliability column �rel_trial� from the primary column �trial�,
copying every second cell, and retaining the �onset�, �trialnum� and �unit� codes, and then writes
the new �rel_trial� column back to the spreadsheet.

83

require 'Datavyu_API.rb'
begin
rel_trial = make_reliability("rel_trial", "trial", 2, "onset", "trialnum", "unit")
setVariable("rel_trial", rel_trial)

end

See also:

� Check Inter-rater Reliability to Improve Data Accuracy

merge_columns()
merge_columns(*column_names)

Combines multiple columns together and returns a new column containing all the codes from the given
columns (plus an ordinal number code for each column).

Behaves similar to create_mutually_exclusive, however, identical results are not guaranteed.

[t]|l|L|L|
Parameter Type Description

name String The name of the new column you wish to create.
columns List Columns to combine. List can contain either the names of the columns as

Strings or the RColumn object representing the column.

Returns

New RColumn object on success. Nil value on failed merge.

Example

The following example creates a column called �merged� from three source columns:
gesture_mom, gesture_child, gesture_dad.

merged_column = merge_columns('merged', 'gesture_mom', 'gesture_child', 'gesture_
↪→dad')
set_column(merged_column) # save to spreadsheet.

new_column()
new_column(name, *codes)

Creates a new blank column with the speci�ed name and codes.

[t]|l|L|L|

Parameter Type Description
name String The name of the new column

codes comma separated Strings Codes that the new column will contain.

Note: new_column() creates the onset, o�set, and ordinal codes by default. You do not need to
specify them in the codes.

Returns

Ruby object representation of the new column in Datavyu.

84

Example

The following example creates a new Datavyu column called �trial� with the codes �trialnum� and
�unit�, and assigns them to an RColumn object called trial. It then adds a new cell to trial using
new_cell() and writes the changes back to the Datavyu spreadsheet using set_column().

require 'Datavyu_API.rb'
begin
trial = new_column('trial', 'trialnum', 'unit')
trial.new_cell()
set_column(trial)

end

print_cell_codes()
print_cell_codes(cell)

Prints out the values for every code in a speci�ed cell.

[t]|l|L|L|

Parameter Type Description
cell RCell object The cell whose codes you are printing out.

Returns

An object listing all of the codes in a given cell.

Example

The following example uses puts to print out the codes for the �rst cell in the �trial� column, accessed
using print_cell_codes().

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
cell = trial.cell[0]

puts print_cell_codes(cell)
end

print_codes()
print_codes(cell, �le, codes)

Writes a cell's codes to a �le, separated by tab (\t).

[t]|l|L|L|

Parameter Type Description
cell RCell object Cell whose codes you want to write to a �le.

�le String Path to the �le that you wish to write the cell's codes to.
codes Array of Strings Codes whose coded values you wish to print.

Returns

Nothing. Writes results to the speci�ed �le.

85

Example

The following example uses print_codes() to write the coded values for the cells in the �trial� variable
to a �le called �trial_codes.txt�, located on the computer Desktop.

require 'Datavyu_API.rb'

begin
De�nes the location of the �le that we're going to be outputting
the column data to - the �le name is baby_codes.txt
and is located on the Desktop.
out_�le = File.expand_path("~/Desktop/baby_codes.txt")

Creates the �le, and assigns write permissions 'w'

out = File.new(out_�le,'w')

Retrieves the "BabyLocation" column from the spreadsheet
baby = getColumn("BabyLocation")

De�ne which codes we want to print out
codes_to_print = ["ordinal", "onset", "o�set", "arg01"]

Iterate through every cell in the BabyLocation column to
print its coded values.
for cell in baby.cells
Write the ordinal, onset, o�set, and code01 codes to the baby_codes.txt �le,
which is accessed by the variable called out
print_codes(cell, out, codes_to_print)

Write a newline to the �le so that the values for each cell
will be in their own row
out.write("\n")

end
end

save_db()
save_db(�lename)

Saves the current $db and $pj variables to a �le. If the �lename ends with .csv, save_db() saves the
data as a .csv �le. Otherwise, it saves it as .opf.

[t]|l|L|L|

Parameter Type Description
�lename String or Ruby object The full path to save the Datavyu �le to

Returns

Nothing.

Example

The following example saves the current spreadsheet open in the GUI to a �le called test.opf that is
located on the Desktop.

86

require 'Datavyu_API.rb'
begin
save_db("~/Desktop/test.opf")

end

set_column()
set_column(name, var)

set_column() writes columns to the spreadsheet. For columns that already exist, set_column()
replaces the data in the spreadsheet with the version updated using the script. For instance, if you
were to retrieve the �trial� column from a spreadsheet and then make some changes, you would use
set_column() to write those changes to the spreadsheet, replacing the old data with your new data.

If the column does not already exist in the spreadsheet (for instance, if you create a new column using
makeNewColumn()), set_column() will instead create a new column in the spreadsheet.

[t]|l|L|L|

Parameter Type Description
name String (optional) Name of the column that you are inserting

column RColumn object (required) Ruby container of the column that you are inserting into the
spreadsheet (modi�ed output of createNewColumn() or getColumn())

Important: You must specify a value for the column parameter. If you are also passing a value for
the name parameter, the order of arguments must be name followed by column.

Returns

None

Example

The following example retrieves the Datavyu column �trial� and assigns it to a Ruby variable called
trial. After some modi�cations to the trial object, it writes those changes back to the spreadsheet
using set_column().

require 'Datavyu_API.rb'
begin
trial = getColumn("trial")
<some modi�cations to trial>
set_column("trial", trial)

end

smooth_column()
smooth_column(colname, tol=33)

Tweaks cell onsets so that there is a maximum of tol milliseconds between each cell. If two cells are
less than tol apart, it moves on to the next pair of cells; if there is a larger gap than tol, the second
cell's onset is set to the �rst cell's o�set .

[t]|l|L|L|

Parameter Type Description
colname String Name of the column that you wish to modify.

87

tol Integer The tolerance you are willing to accept between a cell's o�set and the next cell's onset. By
default, this is 33ms.

Returns

Nothing. In addition, smooth_column() automatically writes its changes back to the spreadsheet, so
you do not need to write the changes using setColumn().

Example

The following example checks the �trial� column's cells to ensure that a maximum of 50ms between a
cell's o�set and the subsequent cell's onset .

require 'Datavyu_API.rb'
begin
smooth_column("trial", 50)

end

transfer_columns()
transfer_columns(db1, db2, remove, *varnames)

Transfers columns between spreadsheets. Replacing db1 or db2 with the empty string ��, will refer
instead to the currently open spreadsheet in Datavyu.

Thus, if you want to transfer a column into the GUI, set db2 to `', and specify the origin spreadsheet
�le as db1. If you want to transfer a column from the GUI into a �le, set db1 to `', and set db2 to that
�le's path.

Warning: Setting remove to TRUE will DELETE THE COLUMNS YOU ARE
TRANSFERRING FROM DB1.

[t]|l|L|L|

Parameter Type Description
db1 String The full path to save the �rst Datavyu �le. Set to `' to use the spreadsheet that's currently

open.
db2 String The full path to save the second Datavyu �le. Set to `' to use the spreadsheet that's

currently open.
remove Boolean If TRUE, Datavyu will delete the columns from db1 as they are copied to db2. FALSE

leaves the columns intact.
varnames list of strings List of the names of the columns that you wish to copy from db1 to db1. You

must specify at least one column name.

Returns

Nothing. Saves �les in place or modi�es the GUI.

Example

The following example transfers the column �idchange� from test.opf to the GUI and leaves test.opf
intact and unmodi�ed.

88

require 'Datavyu_API.rb'
begin
sourceFile='/Users/datavyutester/Desktop/FileName1.opf'
destinationFile='/Users/datavyutester/Desktop/FileName2.opf'
columnsToTransfer = ['trial_rel', 'condition_rel']
transferMyVariable(sourceFile, destinationFile, false, columnsToTransfer)

end

See also:
The Glossary
See also:
The Glossary

89

90

Chapter 3

Frequently Asked Questions

3.1 General

3.1.1 What is Datavyu used for?

Datavyu is a video coding and data visualization tool for collecting behavioral data from video.

3.1.2 Can I use Datavyu to analyze data?

Datavyu is a data coding tool, not a statistical analysis tool. You can export data from Datavyu in a variety
of forms depending on your analysis needs. See the Export Data from Datavyu and Use Scripts to Export
Data from Datavyu tutorials for more information.

3.1.3 What video formats does Datavyu support?

Datavyu supports all video formats that Quicktime or VLC can play, including .mp4, .asf, .wmv, .avi, .�v,
.mov, .mpf, .ogg, .mpg, .nsc, .wav, and .dts. Please test video playback on each of your computers in your
work environment by downloading Datavyu, and playing video data you plan to code.

We highlight suggest using the Quicktime plugin because the VLC plugin has known timing problems
which could lead to inconsistent coding.

3.1.4 Can I code sources that are not videos?

Yes, we mostly support video data but other sources can be analyzed in Datavyu as well.

3.1.5 Is there somewhere I can share or store my spreadsheets and videos?

Yes indeed! Databrary is a web-based repository for open sharing and preservation of video data and
associated metadata. The project website has more information about the initiative and a guide to help you
get started.

3.1.6 Do I have to pay for Datavyu?

No! Datavyu is a completely free and open source program. If you would like to contribute to the development
of Datavyu, see: the source on GitHub.

3.1.7 What is Datavyu's citation?

Datavyu Team (2014). Datavyu: A Video Coding Tool. Databrary Project, New York University. URL
http://datavyu.org.

91

http://databrary.org/
https://github.com/databrary/datavyu
http://datavyu.org

3.2 Technical Requirements

3.2.1 Which operating system is Datavyu available for?

Datavyu builds are available for both Windows and Mac OS X. You can download either version from the
Datavyu Downloads page.

3.2.2 Do I need any additional software to run Datavyu?

Datavyu requires Java, and either Quicktime or VLC. See Requirements for more details.

3.2.3 What hardware do I need to code data sources in Datavyu?

Datavyu makes extensive use of a the keypad for controlling video playback. If your keyboard does not have
a keypad (for example, if you're working on a laptop), you will need to acquire an external keypad.

Beyond that, there are no speci�c hardware requirements.

3.2.4 Do I need to be connected to the internet when using Datavyu?

No! Datavyu runs entirely on your computer. If you are connected to the internet, however, Datavyu will
check to see if there is a new version of Datavyu that you can download. See Keep Datavyu Up-to-Date for
more information.

3.3 Support

3.3.1 I've never coded video data before. How should I start?

We are writing a Best Practices Guide to provide detailed tips and advice to help you start coding behavioral
data from video.

3.3.2 Where can I learn to use Datavyu?

The Datavyu user guide provides comprehensive documentation of Datavyu's interfaces and capabilities, as
well as tutorials to guide you through common tasks.

3.3.3 I'm not sure how to best code my data? Are there guidelines for coding?

The Best Practices Guide will provide in-depth instructions and suggestions for coding your behavioral data.
It is coming soon!

3.3.4 What is the best way to prevent data loss?

We suggest that users pull all of their spreadsheets to the desktop before coding them. After coding, users
can ship their spreadsheets back to their folders or hard drive.

3.3.5 How do I update Datavyu?

When you �rst start up Datavyu while connected to the internet, Datavyu automatically checks for new
versions and prompts you to update if there is a new version. See: Keep Datavyu Up-to-Date for more
information.

3.3.6 Where can I ask questions about issues I'm having with Datavyu?

Post your questions to the Datavyu support forum and Datavyu maintainers and users will help you �nd
the answers you're looking for.

92

http://datavyu.org/download/
http://datavyu.org/download/
http://datavyu.org/support/

3.3.7 I have found a bug in Datavyu! How can I report it?

If you �nd a bug, you can post to the Datavyu support forum or email the Datavyu team, Datavyu Support.

3.4 API Scripts

3.4.1 What is a script?

A script is a collection of code that performs actions on a �le or spreadsheet. You could write a script to
add a column, add codes to a column, duplicate and move data around, or export data to a convenient �le
format for analysis with SPSS, for example. See the Ruby API guide for more information.

3.4.2 I'm not a programmer - where can I learn to write scripts?

The Ruby API guide provides an in-depth introduction to scripting with Datavyu's Ruby API, tutorials that
guide you through common scripting tasks and detailed method reference for each API component, to help
you learn how these components work together.

If you're completely unfamiliar with programming, going through the Ruby language's Learn Ruby in
Twenty Minutes tutorial may be helpful. Ruby is an easy-to-read programming language which was designed
to be intuitive and easy to learn, so gaining the basics should be feasible.

3.4.3 What can I use scripts for?

You can write scripts to import, manipulate, and export data. The API Tutorials describe common tasks
you can write scripts to accomplish.

3.5 MacSHAPA and OpenSHAPA

3.5.1 I have existing MacSHAPA �les - can I convert my them to Datavyu?

Yes! You can import a MacSHAPA �le into Datavyu through a simple script. See Convert MacSHAPA Files
to Work in Datavyu for details.

3.5.2 I have existing OpenSHAPA �les - can I convert them to Datavyu?

Yes! You can open your OpenSHAPA �les in Datavyu like you would any other Datavyu �le.

3.5.3 Will my MacSHAPA queries work in Datayvyu?

Unfortunately, MacSHAPA queries do not work on the new Datavyu format. You will need to write new
scripts for your Datavyu spreadsheets.

3.5.4 Will my OpenSHAPA scripts run in Datavyu?

Yes! You can easily convert an OpenSHAPA script to work in Datavyu by adding require 'Datavyu_API.rb'
to the top of your OpenSHAPA script �le and removing the OpenSHAPA API code that precedes the script.
For more information see the Convert an OpenSHAPA Script to the Datavyu Format tutorial.

93

http://datavyu.org/support/
mailto:info@datavyu.org
https://www.ruby-lang.org/en/documentation/quickstart/
https://www.ruby-lang.org/en/documentation/quickstart/

94

Chapter 4

Walkthrough Videos

We have produced several videos that help illustrate Datavyu's strengths and guide users through common
tasks:

4.1 Tutorial Videos

4.1.1 Datavyu Components & Playback

Learn about Datavyu's media player and video controller. Discover the power of Datavyu's �ngertip playback
control. For more information see Getting Started and Controller Overview .

4.1.2 Time-Lock Events Codes to Video: Cells & Coding Spreadsheet

Learn how Datavyu time-locks video events to the coding spreadsheet. Dive into how a coding column and
a �cell� within a coding column work. See examples of time-locking events to video. For more information
see Spreadsheet Overview and Con�gure Columns and Codes.

4.1.3 Time-Lock Events Codes to Video: Coding Timestamps

Learn how to use Datavyu's �ngertip control functions to time-lock video to the coding spreadsheet.
Explore three ways of inserting timestamps with appropriate use cases. For more information see
:doc:'/guide/tutorials/add-cells'.

4.2 Short Walkthrough Videos

4.2.1 Modifying Columns & Font Size

See how to create, rename, and move columns. Learn how to increase and decrease font size on cell codes
by �zooming.�

4.2.2 Modifying Codes with the Code Editor

See how the Code Editor can be used to create new columns and codes, rename codes, and change code
order.

4.2.3 Spreadsheet Temporal Alignment

Watch how cells can be viewed relative to their duration across columns using temporal alignment in the
coding spreadsheet.

95

4.2.4 Modifying Columns with a Script

See an example of how scripts can be used to modify coding spreadsheets. Learn about scrips with Ruby
API documentation

96

Chapter 5

Coding Example

5.1 Watch an Expert User Code

Use the provided coding example and video to practice coding.

5.2 Watch an Expert User Transcribe

Watch a transcriber use Quick Key Mode to tag utterance timestamps and use Highlight and Focus to insert
transcripts into those newly created cells.

97

98

Chapter 6

Best Practices for Coding Behavioral

Data from Video

6.1 Watch a Presentation on Video Coding and Best Practices

Databrary and Datavyu are hosting regional workshops around the U.S. to share research tools and resources
to the science community. You can watch the regional workshop presentations and view the slides on
Databrary.

6.1.1 Overview of Coding Process

Welcome to the Best Practices Guide. These guidelines are intended as general suggestions for how to code
behavioral data from video. The guidelines will help you to make the most of Datavyu, but the general
principles are applicable for coding with any software tool or even for coding with paper and pencil.

Datavyu is agnostic about what researchers code and how they code it. This makes the software very
powerful and �exible, but it puts the responsibility of designing the spreadsheet and coding criteria on the
user. For a beginner setting out to code behavioral data for the �rst time, or a more experienced coder who
is new to Datavyu, �guring out where to start can be daunting. This guide will help you to get started and
will provide a framework for thinking about coding behavioral data from video.

If you have questions or comments about behavioral coding, please go to the Datavyu Support Forum.
Other researchers may have run into the same problems, posted similar requests, or have o�ered similar
suggestions for improving the coding process. Similarly, other researchers may bene�t from hearing your
questions and comments.

While learning about best practices in behavioral coding, you may �nd it useful to reference the Datavyu
User Guide to learn more about Datavyu features and various aspects of the Datavyu spreadsheet and video
controller.

Video Coding as a Series of Filters

Your video �les are your raw material. Video can't capture everything that happens in a session, but with
a well-designed recording arrangement, video can capture the essential behaviors of interest. The data that
you actually analyze (e.g., with statistics) are not the raw video �les. Instead, the data that you analyze are
derived from a smaller subset of information�categorical codes, durations computed from onset and o�set
times, straight transcripts of speech, informal comments, and so on. Therefore, it is important that your
video recording arrangement allows your coders to see the behaviors of interest, that your codes re�ect the
information you intend to capture, and that the data are in a format that permits you to run the analyses
you want to do. As Bakeman (2000) put it: �Occasionally investigators speak of videotapes as data, but
this seems a misnomer. Videotapes. . . are raw material, not data. Data. . . are the product of measurement;
videotapes are no more data than a hunk of marble is sculpture� (p. 144).

99

https://nyu.databrary.org/volume/1/slot/10068/-?asset=28062/
http://datavyu.org/support

Think of the video coding process as a series of �lters. Your recording arrangement is the �rst �lter.
Your participants emit behavior. Although video captures much of the richness and complexity of behavior,
your cameras cannot capture everything. Some of the behavior and some of the context pass through the
initial �lter and that is what you capture on video. But some of what the participants do and some of
the physical and social context is immediately lost. Your video codes are the second �lter. You will score
only a small subset of behaviors visible and audible on video. The rest of the behaviors are unused and
unexamined. What you choose to code, depends on your theoretical perspective. Your analyses are the third
�lter. Time-tagged video coding (as enabled by Datavyu) provides information about the timing relations
among coded behaviors. However, most researchers analyze only the frequencies and durations of behaviors
they code and the timing relations (the order of events; what happens �rst and last; time lags between
events; etc.) are lost.

Poor choices in terms of your video recording arrangement and coding scheme will taint the entire process.
Good choices will highlight the questions you wish to address by focusing the camera, coding, and analysis
�lters on the behaviors of interest.

4 Steps of Video Coding

Coding behavioral data is a multi-step, iterative process of planning, testing, revising, and re�ning. You
should expect to revise many aspects of your coding plan as the data present you with new information
and surprises. Even highly experienced coders should not expect to plan everything ahead of time because
new tasks, procedures, populations, and research questions a�ect participants' behaviors. Indeed, one of
the great joys of coding behavior is that you will always discover new things. Thus, you will likely need to
rethink your plan a few times. Fortunately, getting started and making revisions and additions are easy to
do in Datavyu.

The overall process involves four steps, which are described in detail below. These four steps will help
you to avoid wasting time. We urge you not to collect hours of video before verifying that you can see the
behaviors of interest. Do not code hours of data before verifying that your coding scheme is reliable and
that you can export the data in a format that works for your statistical and graphical analyses. Otherwise,
you may spend valuable time collecting and coding data that you can't use.

Figure1: The process begins at Step 1 with a procedure for ensuring that your recordings capture the
behaviors of interest; the process ends at Step 4 with an exported �le of variables that can be used for
statistical and graphical analyses. Each step involves multiple iterations (denoted by the looping arrows).
Ideally, earlier steps are completed appropriately before implementing later steps.

100

6.1.2 Step 1: Recordings�Verify That You Can See the Behaviors of Interest

Overview

Record a few videos with your intended study procedure. Verify that your video recording arrangement
allows your coders to see the critical behaviors of interest. If the behaviors are not visible, revise the camera
views. Once veri�ed, begin collecting data in earnest.

What It Means to �See� Behaviors of Interest Remember, the video camera is a �lter. If the
behaviors are not on camera, you cannot see them and you cannot code them; they might as well have never
happened. Datavyu allows you to view your videos at various speeds. Exploit this feature to determine
whether the behaviors of interest are adequately visible for coding.

On Camera Camera views make all the di�erence. With well-designed camera views, the behaviors
of interest are visible and large on the video frame. It can be advantageous to collect data from multiple
camera views: di�erent behaviors may be visible from di�erent angles, and it is often helpful to have multiple
perspectives on a single behavior. Datavyu can synchronize views from di�erent video �les or you can use
commercial software to merge and synchronize your camera views onto a single video frame. Often, the
critical behavior of interest is obscured on one camera view; multiple camera views ensures that you will
always be able to see the behavior.

Viewing Speed Visibility varies depending on the viewing speed. For many behaviors, you will want
to view the videos at speeds slower than real time. Datavyu provides easy, �ngertip control over the viewing
speed with the shuttle keys�allowing you to slow down, speed up, or pause the video with a tap of a �nger.
You can also view the videos frame by frame using �ngertip control over the jog keys.

Rules of Thumb Use HD video for a crisper, higher resolution image. But, be aware of data
storage requirements. Most people don't need the highest setting on their camera, which results in huge,
unmanageable �les. Large �les also require more powerful computers for playback. The �lowest� HD setting
is a lot easier to store and for most purposes looks great. Thus, consider the trade-o� between higher
resolution videos and storage/processing requirements. Your camera lenses and apertures will also a�ect
whether the image is blurry, distorted, dark, or over-exposed.

In general, it is easier to code things you can see rather than things that you hear.
Use visual cues, not sound cues to demarcate sections of video. You can only hear sound while playing

the video in real time and it is di�cult to determine when a sound begins or ends with frame precision. Use
visual contrast, not sound, to demarcate important sections of your recording session (e.g., new conditions,
new trials). Abrupt changes in contrast are easier to see than subtle visual changes, especially at faster than
real-time speeds (and you are likely to want to fast forward to di�erent sections of your video). Flipping
the room lights on and o� provides an easily implemented and visible demarcation of sections of the session.
Holding a bright card in front of a camera (with condition name or trial number) provides another easily
implemented and visible demarcation of sections of the session.

Use multiple camera views to capture both small body parts/small movements and the whole body/scene.
Small body parts, small movements, facial expressions, and eye movements are di�cult to see when they are
small in the video frame.

Part of planning your recording arrangement involves thinking about your recording context. For
example, white skin is di�cult to see against a light background and dark skin is di�cult to see against a
dark background. So, create more visual contrast by making your background a bright or saturated color or
dressing the child in a bright or saturated color (we use bright blue carpets and mats because infants' hands
and feet are clearly visible against them).

Video Example This video displays how easy it is to record videos that miss the behaviors of interest.
The experimenter was interested in understanding how parents teach children to open containers. You can
see by the video example that the single camera view is completely blocked by the parent.

Revise or add more camera views until you can thoroughly see your behaviors of interest.

101

How To Determine Whether Your Recording Arrangement Is Optimal After you've collected
data from a few sessions, open the video �les in Datavyu and view representative portions of the videos at
various speeds, including real time, speeds faster and slower than real time (1x, 1/2x, 2x with the shuttle
keys, and frame-by-frame using the jog keys), and while moving backward through the video at various
speeds (-1/2x, -1x, -2x, jogging backward, etc).

Are the critical behaviors on camera?
Do the zoom and camera angle make it easy to see the behaviors of interest?
Can you see the frame when a behavior of interest starts and the frame when it ends or is it too blurry?
If you cannot see and hear the behaviors of interest, you will need to revise your recording arrangement

or rethink your goals for coding.

6.1.3 Step 2: Codes�Design a Formal Coding Scheme

Overview

To design a formal coding scheme, you will need to plan your coding passes, set up a template Datavyu
spreadsheet, and draft a coding manual that de�nes your codes. Test your coding scheme on a few examples
for each cell in your study design (e.g., each age and condition). As your draft criteria fail or new behaviors
emerge, revise your coding scheme (remember that revisions are to be expected). Consider the types of
analyses that you would like to run as you plan your codes and spreadsheet. Be sure that you can export
your data in a suitable form for your analyses and that your coding scheme is not too detailed or too vague
for your statistical and graphical analyses. You may have beautifully coded and reliable data, but if you
cannot export it in a way that allows for analyses, you have nothing.

Coding Theory and Practice

Useful De�nitions You may want to reference Datavyu's User Guide to gain deeper understanding
of various key terms.

A code tags a section of video with an identi�er. Codes for outcome measures typically re�ect
the expression or non-expression of particular behaviors or traits. Codes can also represent participant
information, conditions, tasks, predictors, and independent variables. In Datavyu, codes are represented by
a cell in the coding spreadsheet or by a variable within the cell. When coders �code� video �les, they insert
cells and type letters into prompts for each variable within the cell.

A coding manual describes and documents what coders should do (and what previous coders did do)
while scoring the videos. It formalizes the coding decisions by de�ning what each code represents, and the
criteria for coders' decisions. This information is valuable for researchers who may analyze or revisit their
data months or years after its collection, for setting conventions within and across labs, and for sharing and
repurposing data. You likely want a separate coding manual for each study. You can use an existing manual
as a template to set up a new coding manual.

A coding pass re�ects a complete scoring of a video �le for one variable or set of variables. In Datavyu,
a pass is generally a column of cells with codes.

A spreadsheet organizes and stores your codes for a particular video �le. In Datavyu, the spreadsheets are
the Datavyu �les. Each spreadsheet is automatically linked with its corresponding video �le. In Datavyu,
your codes are in cells and your cells are in columns. Regardless of coding software, you should expect to
develop your coding manual and set up your template coding spreadsheet in tandem. This is an iterative
process and you will likely need to make changes or want to add new coding passes and/or codes down the
line.

A comment is a note by a coder. Comments can be completely informal and used e�ectively to get
an idea of what behaviors of interest are on the videos. Comments can be more formalized (by adding
the coder's name and date of comment) and used in a more serious way to locate excerpts, highlight
problems/discrepancies, or explain a coding decision.

The ordinal is the number of the cell in the sequence of cells in a column. Ordinals are an important
way to keep track of a sequence of cells or the identity of a cell when time is not useful.

102

In Datavyu, onset and o�set times are the two times that accompany each cell. Typically, the onset
time marks the beginning of an event and the o�set time marks the end of the event. Sometimes events
are continuous (e.g., when baby looks left, the look to the right ends; when baby looks away, the look to
the left ends). Sometimes events are isolated (e.g., after trial #1 ends, there are several seconds or minutes
before trial #2 begins). Sometimes only the onset or the order of events is important; in that case, you
can code using point cells, where there is only one time associated with each cell (onset and o�set are the
same number). Sometimes onsets and o�sets are arbitrary (maybe you want to assess a behavior every two
minutes or randomly sample 10 minutes of behavior from each hour); Datavyu scripts make time sampling
easy. Datavyu has special keys for entering onsets/o�sets for continuous events, isolated events, and point
cells. Sometimes you will want to use onset or o�set times as a way to link cells across columns. Note that
the notion of onset and o�set is only a convention. In Datavyu, it is possible for the �onset� time to be later
than the �o�set� time, if for example, you want one time to represent the start of event A and the other
time to represent the start of event B and sometimes B precedes A. In these cases, Datavyu will display the
cell with a red line (don't worry, the red line is only a tag; it does not mean that you made a mistake unless
your code does not allow o�set times to precede onset times).

In Datavyu, a script is a routine written in the Ruby programming language that allows you to
manipulate the data in your spreadsheet, add/delete codes from your spreadsheet, insert or delete cells
in your spreadsheet, insert or delete columns in your spreadsheet, conduct analyses on your codes, import
data into the spreadsheet, and export spreadsheet data in whatever format you desire. Scripts can operate
on a single spreadsheet or on all of the spreadsheets in a �le (e.g., 100s of spreadsheets simultaneously).

Coding Criteria and Types of Codes Behavioral codes lie along a continuum. Implicit (sometimes
called �subjective�) codes are at one end of the continuum and explicit (sometimes called �objective�) codes
are at the other end of the continuum. The di�erence between the two types of codes is whether the
behavioral criteria for codes are implicit or explicit. Implicit codes do not require the observer to see
particular behaviors; explicit codes do require this. As illustrated in the following 2 x 2 table, the bene�ts
of one are the failure of the other. Implicit criteria allow coders to determine the code based on their own
judgments of what behavior is being expressed; coders can take individual di�erences between participants
into account. Explicit criteria force coders to determine the code based on whether a particular behavior
was expressed; individual di�erences between participants and particulars of the situation must be ignored.
With an implicit code for �falling,� for example, coders use their own judgment to decide whether the infant
lost balance in the particular instance. With an explicit code for �falling,� coders must use explicit criteria
such as whether the infant's hands or bottom touched the �oor, whether the transition from upright occurred
within a particular time frame, or whether an experimenter or parent grasped the infant's body. With an
implicit code for �negative a�ect,� coders use their own judgment to decide whether a child feels distress or
anger. With an explicit code, coders must use explicit criteria such as whether the child's brows were knit,
lip was jutted, mouth was in a square shape, or crying/tears were expressed.

[t]|T|T|T|
Type Implicit Coding Criteria Explicit Coding Criteria

Pros Re�ect individual di�erences in the manner of expressing the target behavior Know how behavior was
expressed in each instance and individual

Cons Do not know how behavior was expressed in each instance and individual Ignores individual di�erences in
manner of expressing the target behavior

Implicit and explicit codes can be equally reliable (in terms of inter-rater reliability and consistency
of participants' responses) and equally valid (meaning that the codes re�ect the behaviors you intend to
measure). The bene�t of an explicit code is that you will know exactly what coders scored (e.g. baby
stopped for at least 0.5s at the edge of the obstacle with feet or hands touching the obstacle, etc.).

In some cases, implicit codes are your best bet and can assure you that an explicit code was su�ciently
exhaustive. For example, in a study asking whether infants defer to mothers' advice about walking down
slopes, we worried that mothers' delivery of encouragement or discouragement might have been in�uenced
by the severity of the slope of an incline; perhaps mothers did not encourage as enthusiastically on steep
slopes as they did on shallow ones or did not discourage as enthusiastically on shallow slopes as they did on
steep ones. Thus, we asked blind coders to judge whether the slope was shallow, steep, or intermediate and
whether mothers were providing an encouraging or discouraging message based solely on mothers' behaviors.

103

With this implicit code, coders judged type of message nearly perfectly, but judged degree of slope exactly
at chance. We thus satis�ed ourselves that the explicit codes were su�ciently exhaustive.

Implicit and explicit codes can be of any granularity. Datavyu can provide detailed frame-by-frame coding
(in milliseconds) and global approximate coding (region of video, ordinal only) or both. It's entirely up to
you. Implicit and explicit codes can refer to durations (involving onset and o�set times) and to categories
(did behavior occur yes/no; which of several behaviors occurred; what is the ranking of the behavior).

Non-behavioral codes can also be scored in Datavyu. For example, you can type in or import information
about participant demographics, the observational setting, various conditions and independent variables, and
so on. Non-video data can be imported into Datavyu if you use our code and Ruby API. You can import
your own data into Datavyu and use it to identify interesting sections of video or you can use the video to
identify interesting sections of other synchronized data streams.

Plan Coding Passes

Before Designing Your Codes Before planning your formal coding criteria, get an overview of your
videos. Watch a few representative segments of video (4-6 videos from each �cell� in your research design) in
real time. Watching bits of video from several participants or sessions will save you from basing your coding
scheme on behaviors that are not representative of your whole sample.

In Datavyu, you can create a �comment� column where you can jot down your ideas as you watch the
videos. Your o�-the-cu� observations will be tagged to the approximate location of the event in the video
that prompted your thoughts. You needn't even pause the video to do this.

When you feel that you've seen enough, start planning your formal coding scheme. You can refer back to
your comments and the corresponding portion of video using the ��nd� key on the Data Viewer Controller.

Start Simple Behavior is rich and complex, so it might be tempting to try to code everything at
once. Don't do it! Instead, start simple. In Datavyu, you can use columns to capture information about
the participant(s) on the video and to delineate important sections of the session and to re�ect your study
design. You can also use columns to capture the behaviors of interest.

Starting simple is especially important for researchers new to behavioral video coding and users new to
Datavyu. Please start simple!

Why Code in Passes? Coding in passes (scoring one set of measures all the way through a video �le)
is faster, more e�cient, and less tiring for coders than coding multiple passes simultaneously (e.g., watching
a trial to score it for one set of measures then watching it again to score it for a second set of measures
and so on). Coding in passes minimizes the need to watch the same short bits of video repeatedly to score
multiple behaviors. In Datavyu, you can code your variables in any order that you like. However, if you
adopt the recommended practice of coding in passes, you will code a set of measures all the way down one
column in your spreadsheet before coding another column. Datavyu, however, will allow you to code across
columns and to code the same segment of video repeatedly, and has shortcut keys to do so.

You may wish to use your �rst coding pass to delineate important sections of the session. Perhaps the
session begins with some introductory procedures (interview, questionnaire, set-up, etc.), is followed by the
target procedure, and then concludes with clean-up procedures. Or perhaps your recording session involves
3 studies or one study with several conditions. In these cases, your �rst column might re�ect the overall
temporal structure of the session.

For your �rst content-loaded coding pass, focus on the behavior(s) most important to your study question
(e.g., did the baby say the correct word, did the baby go over the edge of the cli�, etc.). In other words,
start with the dependent measure that is most important, direct, and quick to answer the primary question
of your study (if you could pick only one dependent measure, this is the one to start with). Focusing your
�rst coding pass on the primary outcome measure(s) ensures that you will not waste time coding a sea of
variables that you might never analyze. You can code other, secondary behaviors in subsequent passes (e.g.,
where baby looked while naming the object).

Passes can be nested and interleaved. Conditions are nested within the participant, trials are nested
within conditions, and outcome measures are nested within trials. In Datavyu, you do not need to repeat

104

the more inclusive category for each nested category. Instead, you can tag each row of behavior with the
larger inclusive categories when exporting the data using scripts in the script library.

Natural behaviors are interleaved and overlapping. Some behaviors are ongoing while other behaviors are
stopping and starting (e.g. while child is talking, child touches and then stops touching a toy, etc.). Datavyu
does not require mutually exclusive codes (e.g. talk without touch, talk with touch, no talking without
touch, no talking with touch, etc.). This is a good thing because three types of behaviors are too much for
a coder to translate into mutually exclusive categories by themselves (e.g. talk without touch and without
look, talk without touch and with look, talk with touch and without look, etc.). You can code behaviors in
di�erent passes to capture the interleaving and overlapping. This is much easier than trying to deal with
all the combinations of possible events. Exporting interleaved codes can be challenging so you should be
comfortable exporting simpler codes before tackling interleaved behaviors. After you are comfortable with
exporting simple and nested codes, visit the script library to �nd scripts for carving interleaved behaviors
into mutually exclusive categories for export.

Consider inter-rater reliability as a separate coding pass for each of the coding passes scored by the
primary coders. In Datavyu, you can do primary coding and reliability in the same spreadsheet by adding a
column for each reliability pass. To ensure that the reliability coder does not inadvertently cheat, you can
hide the column coded by the primary coder using the �hide column� feature.

Rule of Thumb: Minimize Pain, Maximize Gain Coding is a repetitive activity: Coders look for
particular behaviors and score them over and over across di�erent participants and sessions for hours at a
time. So, minimize the requirements on coders' attention and short-term memory. Design your codes so that
coders' visual attention is directed toward a coherent set of behaviors that occur at the same relative places
in the video frame. For example, if the coder is scoring the person's manual actions, they can easily attend
to the objects touched at the same time. Indeed, they cannot determine whether a reach occurred without
also noting the target of the reach. Do not ask coders to divide their attention between two regions of the
screen simultaneously. It is very di�cult to attend to a person's face, for example, while simultaneously
attending to the rest of the body; this would divide the coders' attention.

Do not over code. You can always go back and add detail (and Datavyu's scripts will facilitate this
process). So, start simple with the behaviors you are most interested in. Do not agonize over frame accuracy
if you do not care about the exact durations of an event. Just code what you want to analyze.

A related rule of thumb: If you have already seen it, you may as well code it. That is, if the coder already
knows something of interest without doing additional work, looking at additional video frames, or giving the
problem additional thought, then the coder may as well code that behavior. For example, if the coders are
scoring grasping actions, they also know what object is being grasped without the coders having to think
about it or look at any additional video frames; so they may as well code the target object. If the coders
are scoring the �rst frame when a child starts to walk and the last frame in the walking bout, the coders
know �for free� which foot the child used to begin walking and which foot the child used to end the bout.
However, the coders do not know without additional coding the timing of the other steps within the walking
bout.

Reciprocally, do not design codes that require a mental struggle to decide whether something has occurred
or not. The more a coder can't decide whether a behavior occurred or which behavior occurred, the more
tiring and grueling is the coding process, and the less likely you are to get good, clean data.

Minimize �back-tracking� through the video. Coding is least taxing if the coders can move linearly
through an entire video, stopping only to identify the frames to mark onsets and o�sets and �ll in variable
codes within a cell. Thus, the coder might need to wiggle within a few frames to �nd the target frames,
but you do not want your coders to have to backtrack through the same segments of video repeatedly; they
should not need to view the same several seconds or minutes of video repeatedly to score variables.

Reduce short-term memory load. Make the prompts for each code transparent and accessible. When
possible, do not require your coders to remember the letters for codes (what you set in your coding
manual). In Datavyu, you can reduce the memory load by prompting the codes in the code name (e.g.,
<touch_t_m_b_o> might prompt the coder to score whether the child touched a toy, the mother, self, or
other object). You can also reduce coders' memory load by turning codes into yes-no options (e.g., <toy-yn>
<mother-yn> <body-yn> <other-yn> can be very quickly scored as y, n, n, n by tabbing through the codes
if the child touched a toy). Do not require coders to type 0-1 codes. No one can remember whether 0 = yes

105

and 1 = no or the other way around (or 0 = male and 1 = female, or 0 = left and 1 = right). Use letters
instead. Everyone can remember that y = yes and n = no (and m = male and f = female, etc).

Keep in mind that coding requires motor actions: Coders press keys over and over for hours. Thus,
exploit the features of Datavyu that minimize strain on coders' eyes, hands, and brains. In general, you
want coders to move their hands as little as possible and their eyes as little as possible. Coders should
avoid moving their eyes down to the keyboard and avoid moving their hands from place to place on the
keyboard. Use letters that are accessible without moving the hand from a resting position. An example
hand position would be using the �home keys� because keyboards are designed to allow the greatest access
from that position. Avoid using the mouse! Mousing requires coders to move hands and eyes a lot. Another
good reason to avoid numerical codes is that in Datavyu, numbers must be typed using the number row at
the top of the keyboard because the number pad is reserved for controlling the video and the spreadsheet.
So to type a number, the coders have to move their hands to the top of the keyboard.

Minimize keystrokes by making your codes single letters. You can reuse the same letters in Datavyu
because each code stands alone (e.g., you can have 10 codes in a column that are all yes-no variables). Never
ever use capital letters. This adds a needless extra key press.

Set up the critical components of Datavyu (video images, Data Viewer Controller, spreadsheet) on your
computer screen in the way that best �ts your personal preference and minimizes the need to move your
eyes and hands.

You will likely appreciate the temporal alignment feature of Datavyu that allows coders to immediately
see how one code is nested within another or aligns temporally with another. The alignment feature conserves
coders' motor and psychological energy by providing them with an immediate visualization of the data they
are coding.

Design the Coding Spreadsheet Design the spreadsheet to make coding and exporting e�cient and
straightforward. Think through each coding pass one by one.

In Datavyu, each column represents a coding pass. Start with a column containing the participant
information and a column (or multiple columns) to delineate sections of the session and conditions within
studies and trials within conditions. If your study is highly structured with trials, then you can code the
smallest experimental unit (the trial) at the same time as you code your primary outcome measure. Focus
�rst on your most important outcome measures. Include variables in the pass that coders can see �for free�
without having to shift their attention or think deeply (refer to Minimize Pain, Maximize Gain section, If
you have already seen it, you may as well code it).

In Datavyu, each cell in a column can contain zero or multiple codes. A cell will contain zero codes when
every cell represents the same type of event and you do not want additional information about each event
(e.g., the onset time is when the left foot comes onto the �oor and the o�set time is when the left foot leaves
the �oor; or the onset time is when the eyes point at the target and the o�set time is when the eyes leave
the target).

Because cells correspond to certain times, you may want to de�ne onsets as the start of a behavior and
o�sets as the end of the behavior, but this is not obligatory. If you don't want to analyze time in terms
of durations of behaviors, you don't have to stress over onsets and o�sets. But if you do want to analyze
durations of behaviors, creating criteria for onsets and o�sets is important.

Because each cell corresponds to a particular time (from the onset to o�set), it usually makes sense for
all of the codes within a cell to correspond to the behaviors within that time interval. However, this is not
obligatory. Your cell can include information that occurred before the cell began or after the cell ended
(e.g., cell onset = when mother selects a toy and cell o�set = when mother o�ers the toy to the child;
a variable within the cell re�ects whether child accepted the toy, despite the fact that the acceptance or
rejection occurred after the o�set of the cell, etc.). Build the prompts for each code with the �minimize
pain/maximize gain� rule in mind.

Video Example This video displays how easy it is to set up a draft spreadsheet. After the columns
and codes are added through the Code Editor, you can view the prompts provided for the coders.

Draft a Coding Manual Write your coding manual with a stranger in mind. When you revisit your
manual years later, you will be a �stranger� to the coding criteria. When new coders open your manual, they

106

will be strangers to the coding criteria. Write it for a stranger. Do not use acronyms or terms known only to
members of your lab. Use plain English instead. If you plan to eventually share your videos on Databrary,
you may also want to share your Datavyu �les and coding manual.

More detailed documentation is better. For example, if your document contains only information like �o
= object touch� and �b = body touch,� your coders may not be reliable, the codes may not be replicable,
and the researcher who writes up the study may not have su�cient detail about the coding rules. More
detail will help. For example: �o = object touch. This behavior includes only touching detached objects
that the child could hold in one or both hands; at least one �nger must be in contact with the object for at
least 0.5 s.� And �b = body touch. This behavior includes only touches with one or both hands to the other
arm, legs, head/face/hair, and torso; at least one �nger must be in contact with the body for at least 0.5 s.�
It is acceptable to have several paragraphs to de�ne a single code!

As part of the de�nition of a code, you can specify the optimal speed of viewing for a particular coding
pass or code. For example, some behaviors are easier to see by jogging frame by frame. Other behaviors are
easier to see at 0.5x normal speed or at normal speed. Sections of video (conditions/trials) can usually be
coded at 2x normal speed if they are well marked with a high-contrast prompt.

Outline the coding passes in the manual. List which scripts to run and when to run them to insert cells,
merge cells, export data, and so on.

Consider your coding manual as a �living document.� Even if you do not revise the codes, you are likely
to make changes to the coding manual by adding detail or �xing confusing language. Keep a record of who
made the changes and what date they were implemented.

Video Example This video displays one example of a Coding Manual that outlines the di�erent codes
for the pass called �trial.� It contains detailed de�nitions for each code so future coders can easily pick up
the coding pass. It also contains pictures to accompany the written descriptions.

Test Your Plan Test your coding scheme by coding representative portions of video for several participants
(a few minutes from 4-6 participants per cell of your research design). It is best to test your coding plan
on participants you did not use to design your coding plan. You are likely to �nd that you will need to
revise your coding criteria or add/delete codes when you try out your scheme on new participants, a new
age group, or for a new condition. This is normal: behavior is rich and complex and happily, and children
do di�erent things under di�erent circumstances. However, if the coding feels unduly arduous and grueling,
you should simplify the codes to minimize cost to coders' attention. It is usually better to code in multiple
passes than to code in one grueling, painful pass. In Datavyu, exploit the features of the software to make
every keystroke count and to make every shift in coders' gaze and attention worth their while. For example,
if a behavior occurs earlier in the event, you may need to move the variable to an earlier spot in the variable
list.

Remember, designing a formal coding scheme is an iterative process. You need to start somewhere, test
it out, and then revise.

6.1.4 Step 3: Checks�Check for Careless Errors, Inter-Rater Reliability, and

Design the Format to Export Your Data

Overview

Check that the spreadsheets are free of careless coding errors and that inter-rater reliability is acceptable.
Test your initial plan on a small but representative subset of the video data (4-6 participants from each cell
of your design). At this point, you can get an idea of whether your coders and codes are likely to be reliable
and you can satisfy yourself that you can export your data in the format you need for statistical analyses.

Using Scripts in Datavyu One of the most powerful and �exible features of Datavyu is the scripting
function. In Datavyu, a script is a program written in the Ruby programming language that identi�es
particular values of codes and durations, writes results to a csv text �le, manipulates cells or columns
within spreadsheets, performs operations on values within cells, imports data into the spreadsheets, and
prints data for export. In Datavyu, you should use scripts to check that the spreadsheets are free of coding

107

errors and that inter-rater reliability is acceptable. Datavyu has a push-button export function, but this is
very rudimentary and will only create a text �le that has the same information in the same order as the
spreadsheet.

Datavyu scripts are very powerful. You can use them to perform operations on a single spreadsheet
linked with one video �le or on hundreds of spreadsheets linked with hundreds of videos simultaneously.
Thus, if you want to change the name of a code or add or delete a code, you don't need to manually open
every spreadsheet and perform the operation from Datavyu's code editor. Instead, you can perform these
operations over all the spreadsheets in a folder with one button click of a script. If you want to check your
�le for typos, you do not need to rely on eyeballing the spreadsheet. Instead, you can write a script to locate
any typos. If you want to insert cells to check for inter-rater reliability, you do not need to insert each cell
manually. Instead, you can write a script to insert all the necessary cells at pre-speci�ed intervals or random
intervals to prompt the reliability coder for onset or o�set times and codes.

More generally, whenever you need to perform an operation over many cells or many spreadsheet �les
(e.g., add new columns/passes, add new variables, change name of variables), use a script. The operation will
be nearly instantaneous. Check that the spreadsheets are free of careless coding errors and that inter-rater
reliability is acceptable. Test your initial plan on a small but representative subset of the video data (4-6
participants from each cell of your design). At this point, you can get an idea of whether your coders and
codes are likely to be reliable and you can satisfy yourself that you can export your data in the format you
need for statistical analyses.

Check for Careless Errors Coders make two kinds of errors. One kind of error is a careless error such
as a typo or its equivalent. The coder types a letter that is not a legal option; the coder forgets to mark an
o�set time; the coder mistakenly inserts an extra cell or numbers trials out of sequence. Coders are human
and even the most diligent coder will inadvertently make careless errors. These kinds of errors are not serious
and can be easily �xed if they are caught before the coder shuts the �le and checks inter-rater reliability.

Consistent use of codes is important for your analyses, but Datavyu will allow you to enter any value
you choose. Thus, you need a way to check that your nomenclature is consistently applied within and across
video �les, that cells were inserted correctly, and that each cell has an appropriate onset and o�set time.
In Datavyu, you can do this by writing a script to check for careless errors. You should ensure that all
of the codes are legal values (according to the coding manual). Check that all of the durations are within
acceptable limits (typically negative values are impossible). Check that all of the coded values follow basic
logic. If the child did not touch an object, then there can be no object code for that cell. If the child's
latency to cross the cli� was 0s, then the child could not have avoided going over the cli� or explored before
going over the cli� (because a latency of 0 means there was no time to explore and avoidance re�ects the
total possible trial time). Thus, your error-checking script will identify typos, impossible relations, and out
of range values. In Datavyu, you can even determine the out of range values online based on just-coded �les
with a script using the R-interface.

Video Example This video displays one way to check for errors (typos, impossible values, etc.) within
a spreadsheet.

Check Inter-Rater Reliability A second kind of error is an error in judgment. One coder thinks that
the child touched an object but a second coder does not think that the child touched the object. One coder
interprets the child's facial expression as distress but the other coder sees it as neutral. If coders frequently
cannot agree about the codes for the same section of video, your coding scheme lacks inter-rater reliability.
Inter-rater reliability will be low if there is a problem with the coding criteria (e.g. criteria are ill de�ned,
criteria do not map well onto the behaviors, etc.) or if the coders are not well trained, or both. So, before
you commit yourself to a coding scheme, test inter-rater reliability. If it is too low, you may need to revise
your coding scheme or retrain your coders. Disagreements among coders are inevitable, even those who
are practiced and familiar with the coding scheme. The question is whether the inter-rater reliability is
su�ciently high to warrant con�dence in the coded data.

108

How To Test Reliability Formally What level of agreement is su�cient to consider a code to be
reliable. The literature has no gold standard, but labs typically have their own gold standards. Generally,
for categorical codes, you should use Kappas (which control for the base rate of the behaviors) rather than
percent agreement. If you rely solely on percent agreement, then low frequency events will not be counted
fairly. For example, if you are coding child a�ect as positive/negative and children rarely express negative
a�ect (say, only 2-3 times per 100 trials), one coder could score positive for every trial without even looking
at the video and you will have 97% agreement. The Kappa statistic takes low frequency events into account.
For continuously scored behaviors, you can use the Kappa statistic to check inter-rater reliability frame
by frame. For isolated events, you can use a Pearson correlation coe�cient. You can estimate Kappas in
Datavyu using scripts and the R interface, or you can estimate Kappas using statistical software after you
export your data. Regardless, disagreements among coders are serious and must be reported in the write-up
of the research.

Rules of Thumb By de�nition, careless errors will lower inter-rater reliability. Therefore it is
important to check for and eliminate careless errors before you test for inter-rater reliability.

Coders will experience �drift,� meaning that their coding will change slightly as they become increasingly
experienced at looking at particular behaviors. Therefore, it is important to check inter-rater reliability at
every point in the study�on initial sessions, in the middle of the study, and on the �nal sessions.

How much video should the reliability coder view to ensure inter-rater reliability? A good rule of thumb
is 25%. But because every child is di�erent, your reliability coder should score 25% of each child's data,
rather than 25% of the data. Which 25%? You can check inter-rater reliability at random intervals or regular
intervals�whatever is most appropriate for sampling over the dataset. In some cases, particular trials or
segments of video are especially important. In these cases, the reliability coder can score a larger percentage
of the data�up to 100%.

Spread your best eyes over the entire dataset. For a large amount of data where several people will split
the job of coding a particular pass, have your most experienced and knowledgeable coder score reliability so
that your �best pair of eyes� is looking at representative data over the entire dataset.

Video Example This video displays one way to check for inter-rater reliability for a single column in
a spreadsheet.

Export the Data in a Format Appropriate for Your Analyses From the beginning of the coding
process, keep in mind the data you want to analyze and how you want your data formatted for analyses.
Your coded data are what you will analyze. So, you should be sure that the way you code your data is
compatible with the way that you will analyze it. Think about how you want your data to look when you
export it from Datavyu to analyze it elsewhere (e.g., Excel, SPSS).

Variable Types Although we recommend using alphabet letters as codes rather than numbers, most
researchers prefer to analyze numeric data rather than strings. Although onset and o�set times contain the
information you need to understand timing relations, most researchers prefer to analyze durations rather
than relative times.

Datavyu's Export File function will export the strings and raw onset/o�set times from the spreadsheet.
You can convert these data into numeric and durations in your analysis spreadsheet (with simple compute
functions in Excel or SPSS, for example). But you can also export the data in these formats using Datavyu
scripts.

Spreadsheet Format Most researchers like to analyze their data in square spreadsheet formats. Many
researchers organize the data with one row for the smallest unit of analysis (e.g., a trial, a look, a touch, a
facial gesture) and many rows for each participant. Some researchers maintain one row per participant and
organize tasks or trials across columns. Some researchers aggregate the data (e.g., by averaging over trials)
prior to export to maintain one row per participant.

Behavioral data have a naturally nested structure: Trials are nested within conditions; conditions in turn
are nested within sessions and participants. Facial expressions are nested within interactions and interactions

109

are nested in turn within particular situations within the session. Behavioral data are naturally interleaved:
One event is ongoing while another event is starting or ending.

Datavyu's temporal alignment feature provides coders with immediate information about the nested and
interleaved temporal structure of events. Thus, we recommend that coders delineate the structure of the
session by coding cells to represent the larger and smaller nested units. However, the nested and interleaved
structure of events cannot be exported automatically without the user specifying with a script how they
would like to see the events formatted. Although Datavyu has an automatic Export File function, it will
not repeat information down rows of data unless the data are arranged like that in the spreadsheet. There
is no need to repeat participant ID or condition labels across every trial, however, because you can request
this with a script for exporting the data. Moreover, Datavyu's automatic Export File function will not
carve overlapping and interleaved events into mutually exclusive categorical combinations (e.g., of talking,
touching, and looking). You will need to do this with an export script.

Video Example This video displays a user running a script to export data in a speci�c way. It exports
all of the columns of one spreadsheet into an Excel �le. Instead of just exporting one cell from a Datavyu
spreadsheet, into one cell in Excel, it makes it possible to repeat important information that you want to
store in multiple cells. In this example, participant metadata (id, birthdate, testdate) is stored in only one
cell in a Datavyu spreadsheet but it is information that gets repeated down multiple rows of data to make
it potentially easier to analyze in a statistical program.

Test Your Plan After coding representative video �les from each cell of your research design, test your
plan using scripts. Run scripts to ensure that you will catch careless errors before you export your data.
Run scripts to ensure that your codes are reliable among multiple coders. And run scripts to verify that
you can export your data in the format you need for analyses. If you cannot export your data using only
the Export File function, you will need to use scripts to export your data from Datavyu in the format you
want using the Ruby scripting language. Push a small amount of data (preliminary data if you prefer) all
the way through to the analysis spreadsheet to assure yourself that your data are in the appropriate format
for analyses.

6.1.5 Step 4: Work�ow�Establish a Work�ow and Code Videos

Overview

Now that you have a functioning coding scheme and manual, and have a plan for exporting and analyzing
your data, you should establish a work�ow and code videos in earnest. Use a template spreadsheet. Keep
your video and Datavyu �les and scripts organized into folders. Your primary coder should score a �le and
then check it for errors. The reliability coder goes next, scoring the �le and checking it for errors. The two
coders check their reliability and make decisions about disagreements. Then export the data into an analysis
spreadsheet.

File Organization Keep your �les well organized. You might want an overall study folder that contains
smaller folders to hold paperwork, video �les, Datavyu �les, and so on.

Establish a standard naming convention for each �le type and stick to it. For example, Crawler10-01.
mp4, Crawler10-01.opf, Crawler13-23.mp4, Crawler13-23.opf, Walker13-08.mp4, and Walker13-08.opf might
represent infants from crawling and walking groups at 10 and 13 months of age; the numbers after the
dash might represent their participant IDs; the �le extension denotes video and Datavyu spreadsheet �les.
Naming conventions will make your �les easier to �nd by members of your lab and will make your data easier
to share with other labs.

If you keep video �les in the same folder on the same path as they were when you originally opened them,
Datavyu will automatically �nd them for you when you open the corresponding spreadsheet. Otherwise,
you can link them to the spreadsheet manually. If you keep your Datavyu �les in the same folder, you can
easily run scripts over all of the �les in the folder. You can backup your video �les onto a hard drive or you
can use Databrary as your video �le backup prior to sharing with the larger community.

110

Keep a formal record of who coded what passes on what video �les and what date they did it. Do the
same for reliability coding, and for whether discrepancies among coders were checked or discussed. You
might also assign coding jobs using the same record-keeping system.

Keep your coding manual up to date. If the codes change, make a note of who implemented the change
and what date the change was implemented. This will help you if you need to go back to recode portions of
video or if you need to distinguish changes in the code in your analyses.

Template Spreadsheet Keep a template spreadsheet in your study folder on your computer. This
spreadsheet has the latest version of the codes for each pass, but the columns are blank. When you are ready
to code a new participant, duplicate the template and save it with the appropriate �le name. You can keep
the template up to date by making changes globally to all of the �les in a folder using a script.

File Storage Keep your data safe. Back up your video and Datavyu �les. You can store your videos
and Datavyu �les on Databrary to ensure safe and secure storage and backup.

Coding Work�ow Create a work�ow that suits the operation of your lab. In general, an e�cient work�ow
minimizes errors and maximizes coder's time on task.

First Coder Code and Check Errors You will have a primary coder or set of coders for each
pass. The primary coder will code the pass through the entire video �le. When �nished, before shutting the
spreadsheet, the coder will run the check error script for that pass. The coder will correct all of the identi�ed
careless errors. Then the coder will note in your formal records that the pass is �nished and ready for the
reliability coder.

Reliability Coder Code and Check Errors The reliability coder will code a subset of the video �le
(25% or so) for that pass. In Datavyu, the reliability coder scores data into a new column and the codes
from the primary coder's column are �hidden.� When �nished, before shutting the spreadsheet, the reliability
coder will run the check error script for that pass. The coder will correct all of the identi�ed careless errors.
Then the coder will note in the records that the reliability pass is �nished.

Check Inter-Rater Reliability Now the coders will check their inter-rater reliability. In Datavyu, to
check inter-rater reliability, you will run a script that identi�es times, codes, or trials where coders disagreed.
The rate of disagreements must be reported in the published report of the study. Likely, the �nal analyses
of inter-rater reliability for that pass will be conducted after all of the �les are coded. However, checking
inter-rater reliability intermittently ensures that none of the coders experience so much drift that the codes
become unreliable.

Typically, researchers analyze the data produced by the primary coder and do not analyze the reliability
coder's data beyond ensuring inter-rater reliability. However, known errors need not be entered into the
primary data analyses conducted on the column of data produced by the primary coder. Instead, if the
coders determine after discussing each disagreement that the error was committed by the primary coder,
they could swap the codes between the primary and reliability coders (thereby retaining the same inter-rater
reliability), noting the swap if desired. In this way, known errors are eliminated from the �nal analyses on
the primary coder's data. Note that if errors are eliminated in this way, you must keep a record of the
original disagreement so that you do not in�ate your reliability statistics.

Export Data In Datavyu, data can be exported incrementally after each �le is coded (using the File
Export function or a script), after an entire coding pass is completed across the entire set of video �les
(using a script to complete export in one button press), and/or after all of the coding passes are completed.
Researchers may prefer to analyze one set of variables as they become available rather than waiting until
the entire study is completely coded.

111

Share Your Data in Databrary Video �les and Datavyu �les can be stored and shared with lab members
and collaborators on Databrary as each session is collected. When the researcher is ready (typically, after a
paper describing the study has been accepted for publication), the video �les and Datavyu �les and other
metadata (coding manual, etc.) can be shared with authorized researchers in the Databrary developmental
and learning science community.

Turn all paper data into electronic �les immediately after the session is completed. This will make it
easier for you to track participant permissions, keep your �les organized, and share your data. Do not share
participant contact information on Databrary.

112

